lean2/library/algebra/galois_connection.lean
2016-01-06 10:57:55 -08:00

217 lines
7.3 KiB
Text

/-
Copyright (c) 2016 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
Galois connections - order theoretic adjoints.
-/
import standard
open classical eq.ops algebra set function complete_lattice
/- Move to set? -/
definition kern_image {X Y : Type} (f : X → Y) (S : set X) : set Y := {y | ∀x, f x = y → x ∈ S }
/- Order theoretic definitions -/
/- TODO: move to order? -/
section order
variables {A B : Type} {S : set A} {a a' : A} {b b' : B} {f : A → B} [weak_order A] [weak_order B]
definition increasing (f : A → A) := ∀⦃a⦄, a ≤ f a
definition decreasing (f : A → A) := ∀⦃a⦄, f a ≤ a
definition upper_bounds (S : set A) : set A := { x | ∀₀ s ∈ S, s ≤ x }
definition lower_bounds (S : set A) : set A := { x | ∀₀ s ∈ S, x ≤ s }
definition is_least (S : set A) (a : A) := a ∈ S ∧ a ∈ lower_bounds S
definition is_greatest (S : set A) (a : A) := a ∈ S ∧ a ∈ upper_bounds S
definition monotone (f : A → B) := ∀⦃a b⦄, a ≤ b → f a ≤ f b
lemma eq_of_is_least_of_is_least (Ha : is_least S a) (Hb : is_least S a') : a = a' :=
le.antisymm
begin apply (and.elim_right Ha), apply (and.elim_left Hb) end
begin apply (and.elim_right Hb), apply (and.elim_left Ha) end
lemma is_least_iff_eq_of_is_least (Ha : is_least S a) : is_least S a' ↔ a = a' :=
iff.intro (eq_of_is_least_of_is_least Ha) begin intro H, cases H, apply Ha end
lemma eq_of_is_greatest_of_is_greatest (Ha : is_greatest S a) (Hb : is_greatest S a') : a = a' :=
le.antisymm
begin apply (and.elim_right Hb), apply (and.elim_left Ha) end
begin apply (and.elim_right Ha), apply (and.elim_left Hb) end
lemma is_greatest_iff_eq_of_is_greatest (Ha : is_greatest S a) : is_greatest S a' ↔ a = a' :=
iff.intro (eq_of_is_greatest_of_is_greatest Ha) begin intro H, cases H, apply Ha end
definition is_lub (S : set A) := is_least (upper_bounds S)
definition is_glb (S : set A) := is_greatest (lower_bounds S)
lemma eq_of_is_lub_of_is_lub : is_lub S a → is_lub S a' → a = a' :=
!eq_of_is_least_of_is_least
lemma is_lub_iff_eq_of_is_lub : is_lub S a → (is_lub S a' ↔ a = a') :=
!is_least_iff_eq_of_is_least
lemma eq_of_is_glb_of_is_glb : is_glb S a → is_glb S a' → a = a' :=
!eq_of_is_greatest_of_is_greatest
lemma is_glb_iff_eq_of_is_glb : is_glb S a → (is_glb S a' ↔ a = a') :=
!is_greatest_iff_eq_of_is_greatest
lemma mem_upper_bounds_image (Hf : monotone f) (Ha : a ∈ upper_bounds S) : f a ∈ upper_bounds (f ' S) :=
bounded_forall_image_of_bounded_forall (take x H, Hf (Ha `x ∈ S`))
lemma mem_lower_bounds_image (Hf : monotone f) (Ha : a ∈ lower_bounds S) : f a ∈ lower_bounds (f ' S) :=
bounded_forall_image_of_bounded_forall (take x H, Hf (Ha `x ∈ S`))
end order
definition galois_connection {A B : Type} [weak_order A] [weak_order B] (l : A → B) (u : B → A) :=
∀{a b}, l a ≤ b ↔ a ≤ u b
namespace galois_connection
section
parameters {A B : Type} [weak_order A] [weak_order B] (l : A → B) (u : B → A)
lemma monotone_intro (Mu : monotone u) (Ml : monotone l)
(Iul : increasing (u ∘ l)) (Dlu : decreasing (l ∘ u)) : galois_connection l u :=
begin
intros a b,
apply iff.intro,
{ intro H, apply le.trans, apply Iul, apply Mu, assumption },
{ intro H, apply le.trans, apply Ml, assumption, apply Dlu }
end
parameter (gc : galois_connection l u)
include gc
lemma l_le {a : A} {b : B} : a ≤ u b → l a ≤ b :=
and.elim_right !gc
lemma le_u {a : A} {b : B} : l a ≤ b → a ≤ u b :=
and.elim_left !gc
lemma increasing_u_l : increasing (u ∘ l) :=
take a, le_u !le.refl
lemma decreasing_l_u : decreasing (l ∘ u) :=
take a, l_le !le.refl
lemma monotone_u : monotone u :=
take a b H, le_u (le.trans !decreasing_l_u H)
lemma monotone_l : monotone l :=
take a b H, l_le (le.trans H !increasing_u_l)
lemma u_l_u_eq_u : u ∘ l ∘ u = u :=
funext (take x, le.antisymm (monotone_u !decreasing_l_u) !increasing_u_l)
lemma l_u_l_eq_l : l ∘ u ∘ l = l :=
funext (take x, le.antisymm !decreasing_l_u (monotone_l !increasing_u_l))
lemma u_mem_upper_bounds {S : set A} {b : B} (H : b ∈ upper_bounds (l ' S)) : u b ∈ upper_bounds S :=
take c, suppose c ∈ S, le_u (H (!mem_image_of_mem `c ∈ S`))
lemma l_mem_lower_bounds {S : set B} {a : A} (H : a ∈ lower_bounds (u ' S)) : l a ∈ lower_bounds S :=
take c, suppose c ∈ S, l_le (H (!mem_image_of_mem `c ∈ S`))
lemma is_lub_l_image {S : set A} {a : A} (H : is_lub S a) : is_lub (l ' S) (l a) :=
and.intro
(mem_upper_bounds_image monotone_l (and.elim_left `is_lub S a`))
(take b Hb, l_le (and.elim_right `is_lub S a` _ (u_mem_upper_bounds Hb)))
lemma is_glb_u_image {S : set B} {b : B} (H : is_glb S b) : is_glb (u ' S) (u b) :=
and.intro
(mem_lower_bounds_image monotone_u (and.elim_left `is_glb S b`))
(take a Ha, le_u (and.elim_right `is_glb S b` _ (l_mem_lower_bounds Ha)))
lemma is_glb_l {a : A} : is_glb { b | a ≤ u b } (l a) :=
begin
apply and.intro,
{ intro b, apply l_le },
{ intro b H, apply H, apply increasing_u_l }
end
lemma is_lub_u {b : B} : is_lub { a | l a ≤ b } (u b) :=
begin
apply and.intro,
{ intro a, apply le_u },
{ intro a H, apply H, apply decreasing_l_u }
end
end
/- Constructing Galois connections -/
protected lemma id {A : Type} [weak_order A] : @galois_connection A A _ _ id id :=
take a b, iff.intro (λx, x) (λx, x)
protected lemma dual {A B : Type} [woA : weak_order A] [woB : weak_order B]
(l : A → B) (u : B → A) (gc : galois_connection l u) :
@galois_connection B A (weak_order_dual woB) (weak_order_dual woA) u l :=
take a b,
begin
apply iff.symm,
rewrite le_dual_eq_le,
rewrite le_dual_eq_le,
exact gc,
end
protected lemma compose {A B C : Type} [weak_order A] [weak_order B] [weak_order C]
(l1 : A → B) (u1 : B → A) (l2 : B → C) (u2 : C → B)
(gc1 : galois_connection l1 u1) (gc2 : galois_connection l2 u2) :
galois_connection (l2 ∘ l1) (u1 ∘ u2) :=
by intros; rewrite gc2; rewrite gc1
section
variables {A B : Type} {f : A → B}
protected lemma image_preimage : galois_connection (image f) (preimage f) :=
@image_subset_iff A B f
protected lemma preimage_kern_image : galois_connection (preimage f) (kern_image f) :=
begin
intros X Y, apply iff.intro, all_goals (intro H x Hx),
{ intro x' eq, apply H, cases eq, exact Hx },
{ apply H,
esimp [preimage, mem, set_of] at Hx, exact Hx, -- TODO: why is esimp necessary?
exact rfl }
end
end
end galois_connection
/- Bounds on complete lattices -/
/- TODO: move to complete lattices? -/
section
variables {A : Type} (S : set A) {a b : A} [complete_lattice A]
lemma is_lub_sup : is_lub '{a, b} (sup a b) :=
and.intro
begin
xrewrite [+bounded_forall_insert_iff, bounded_forall_empty_iff, and_true],
exact (and.intro !le_sup_left !le_sup_right)
end
begin
intro x Hx,
xrewrite [+bounded_forall_insert_iff at Hx, bounded_forall_empty_iff at Hx, and_true at Hx],
apply sup_le,
apply (and.elim_left Hx),
apply (and.elim_right Hx),
end
lemma is_lub_Sup : is_lub S (⨆S) :=
and.intro (take x, le_Sup) (take x, Sup_le)
lemma is_lub_iff_Sup_eq {a : A} : is_lub S a ↔ (⨆S) = a :=
!is_lub_iff_eq_of_is_lub !is_lub_Sup
lemma is_glb_Inf : is_glb S (⨅S) :=
and.intro (take a, Inf_le) (take a, le_Inf)
lemma is_glb_iff_Inf_eq : is_glb S a ↔ (⨅S) = a :=
!is_glb_iff_eq_of_is_glb !is_glb_Inf
end