399 lines
14 KiB
Text
399 lines
14 KiB
Text
/-
|
||
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: algebra.field
|
||
Authors: Robert Lewis
|
||
|
||
Structures with multiplicative and additive components, including division rings and fields.
|
||
The development is modeled after Isabelle's library.
|
||
-/
|
||
|
||
import logic.eq logic.connectives data.unit data.sigma data.prod
|
||
import algebra.function algebra.binary algebra.group algebra.ring
|
||
open eq eq.ops
|
||
|
||
namespace algebra
|
||
|
||
variable {A : Type}
|
||
|
||
structure division_ring [class] (A : Type) extends ring A, has_inv A :=
|
||
(mul_inv_cancel : ∀{a}, a ≠ zero → mul a (inv a) = one)
|
||
(inv_mul_cancel : ∀{a}, a ≠ zero → mul (inv a) a = one)
|
||
|
||
-- theorem div_is_mul [s : division_ring A] {a b : A} : a / b = a * b⁻¹ := rfl
|
||
|
||
section division_ring
|
||
variables [s : division_ring A] {a b c : A}
|
||
include s
|
||
|
||
definition divide (a b : A) : A := a * b⁻¹
|
||
infix `/` := divide
|
||
|
||
-- only in this file
|
||
local attribute divide [reducible]
|
||
|
||
theorem mul_inv_cancel (H : a ≠ 0) : a * a⁻¹ = 1 :=
|
||
division_ring.mul_inv_cancel H
|
||
|
||
theorem inv_mul_cancel (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||
division_ring.inv_mul_cancel H
|
||
|
||
theorem inv_eq_one_div : a⁻¹ = 1 / a := !one_mul⁻¹
|
||
|
||
theorem mul_one_div_cancel (H : a ≠ 0) : a * (1 / a) = 1 :=
|
||
by rewrite [-inv_eq_one_div, (mul_inv_cancel H)]
|
||
|
||
theorem one_div_mul_cancel (H : a ≠ 0) : (1 / a) * a = 1 :=
|
||
calc
|
||
(1 / a) * a = a⁻¹ * a : inv_eq_one_div
|
||
... = 1 : inv_mul_cancel H
|
||
|
||
theorem div_self (H : a ≠ 0) : a / a = 1 := mul_inv_cancel H
|
||
|
||
theorem mul_div_assoc (Hc : c ≠ 0) : (a * b) / c = a * (b / c) :=
|
||
eq.symm (calc
|
||
a * (b / c) = a * (b * c⁻¹) : rfl
|
||
... = (a * b) * c⁻¹ : mul.assoc
|
||
... = (a * b) / c : rfl)
|
||
|
||
theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=
|
||
assume H2 : 1 / a = 0,
|
||
have C1 : 0 = 1, from symm (calc
|
||
1 = a * (1 / a) : mul_one_div_cancel H
|
||
... = a * 0 : H2
|
||
... = 0 : mul_zero),
|
||
absurd C1 zero_ne_one
|
||
|
||
-- the analogue in group is called inv_one
|
||
theorem inv_one_is_one : 1⁻¹ = 1 :=
|
||
calc
|
||
1⁻¹ = 1⁻¹ * 1 : mul_one
|
||
... = 1 : inv_mul_cancel (ne.symm zero_ne_one)
|
||
|
||
theorem div_one : a / 1 = a :=
|
||
calc
|
||
a / 1 = /- a * 1⁻¹ : rfl
|
||
... = -/ a * 1 : inv_one_is_one
|
||
... = a : mul_one
|
||
|
||
-- note: integral domain has a "mul_ne_zero". When we get to "field", show it is an
|
||
-- instance of an integral domain, so we can use that theorem.
|
||
-- check @mul_ne_zero
|
||
theorem mul_ne_zero' (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
|
||
assume H : a * b = 0,
|
||
have C1 : a = 0, from (calc
|
||
a = a * 1 : mul_one
|
||
... = a * (b * (1 / b)) : mul_one_div_cancel Hb
|
||
... = (a * b) * (1 / b) : mul.assoc
|
||
... = 0 * (1 / b) : H
|
||
... = 0 : zero_mul),
|
||
absurd C1 Ha
|
||
|
||
theorem mul_ne_zero_imp_ne_zero (H : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 :=
|
||
have Ha : a ≠ 0, from
|
||
(assume Ha1 : a = 0,
|
||
have H1 : a * b = 0, from (calc
|
||
a * b = 0 * b : Ha1
|
||
... = 0 : zero_mul),
|
||
absurd H1 H),
|
||
have Hb : b ≠ 0, from
|
||
(assume Hb1 : b = 0,
|
||
have H1 : a * b = 0, from (calc
|
||
a * b = a * 0 : Hb1
|
||
... = 0 : mul_zero),
|
||
absurd H1 H),
|
||
and.intro Ha Hb
|
||
|
||
theorem mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 :=
|
||
have H2 : a ≠ 0 ∧ b ≠ 0, from mul_ne_zero_imp_ne_zero H,
|
||
mul_ne_zero' (and.right H2) (and.left H2)
|
||
|
||
-- theorem inv_zero_imp_zero (H : a⁻¹ = 0) : a = 0 :=
|
||
-- classical?
|
||
|
||
-- make "left" and "right" versions?
|
||
theorem eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a :=
|
||
have H2 : a ≠ 0, from
|
||
(assume A : a = 0,
|
||
have B : 0 = 1, from symm (calc
|
||
1 = a * b : symm H
|
||
... = 0 * b : A
|
||
... = 0 : zero_mul),
|
||
absurd B zero_ne_one),
|
||
show b = 1 / a, from symm (calc
|
||
1 / a = (1 / a) * 1 : mul_one
|
||
... = (1 / a) * (a * b) : H
|
||
... = (1 / a) * a * b : mul.assoc
|
||
... = 1 * b : one_div_mul_cancel H2
|
||
... = b : one_mul)
|
||
|
||
-- which one is left and which is right?
|
||
theorem eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a :=
|
||
have H2 : a ≠ 0, from
|
||
(assume A : a = 0,
|
||
have B : 0 = 1, from symm (calc
|
||
1 = b * a : symm H
|
||
... = b * 0 : A
|
||
... = 0 : mul_zero),
|
||
absurd B zero_ne_one),
|
||
show b = 1 / a, from symm (calc
|
||
1 / a = 1 * (1 / a) : one_mul
|
||
... = b * a * (1 / a) : H
|
||
... = b * (a * (1 / a)) : mul.assoc
|
||
... = b * 1 : mul_one_div_cancel H2
|
||
... = b : mul_one)
|
||
|
||
theorem one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (b * a) :=
|
||
have H : (b * a) * ((1 / a) * (1 / b)) = 1, from (calc
|
||
(b * a) * ((1 / a) * (1 / b)) = b * (a * ((1 / a) * (1 / b))) : mul.assoc
|
||
... = b * ((a * (1 / a)) * (1 / b)) : mul.assoc
|
||
... = b * (1 * (1 / b)) : mul_one_div_cancel Ha
|
||
... = b * (1 / b) : one_mul
|
||
... = 1 : mul_one_div_cancel Hb),
|
||
eq_one_div_of_mul_eq_one H
|
||
|
||
theorem one_div_neg_one_eq_neg_one : 1 / (-1) = -1 :=
|
||
have H : (-1) * (-1) = 1, from calc
|
||
(-1) * (-1) = - (-1) : neg_eq_neg_one_mul
|
||
... = 1 : neg_neg,
|
||
symm (eq_one_div_of_mul_eq_one H)
|
||
|
||
-- this should be in ring
|
||
theorem mul_neg_one_eq_neg : a * (-1) = -a :=
|
||
have H : a + a * -1 = 0, from calc
|
||
a + a * -1 = a * 1 + a * -1 : mul_one
|
||
... = a * (1 + -1) : left_distrib
|
||
... = a * 0 : add.right_inv
|
||
... = 0 : mul_zero,
|
||
symm (neg_eq_of_add_eq_zero H)
|
||
|
||
theorem one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) :=
|
||
have H1 : -1 ≠ 0, from
|
||
(assume H2 : -1 = 0, absurd (symm (calc
|
||
1 = -(-1) : neg_neg
|
||
... = -0 : H2
|
||
... = 0 : neg_zero)) zero_ne_one),
|
||
calc
|
||
1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul
|
||
... = (1 / a) * (1 / (- 1)) : one_div_mul_one_div H H1
|
||
... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one
|
||
... = - (1 / a) : mul_neg_one_eq_neg
|
||
|
||
theorem div_div (H : a ≠ 0) : 1 / (1 / a) = a :=
|
||
symm (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H))
|
||
|
||
theorem eq_of_invs_eq (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) : a = b :=
|
||
calc
|
||
a = 1 / (1 / a) : div_div Ha
|
||
... = 1 / (1 / b) : H
|
||
... = b : div_div Hb
|
||
|
||
-- oops, the analogous theorem in group is called inv_mul, but it *should* be called
|
||
-- mul_inv, in which case, we will have to rename this one
|
||
theorem mul_inv (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
|
||
have H1 : b * a ≠ 0, from mul_ne_zero' Hb Ha,
|
||
eq.symm (calc
|
||
a⁻¹ * b⁻¹ = (1 / a) * b⁻¹ : inv_eq_one_div
|
||
... = (1 / a) * (1 / b) : inv_eq_one_div
|
||
... = (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||
... = (b * a)⁻¹ : inv_eq_one_div)
|
||
|
||
theorem mul_div_cancel (Hb : b ≠ 0) : a * b / b = a :=
|
||
calc
|
||
(a * b) / b = a * b * b⁻¹ : rfl
|
||
... = a * (b * b⁻¹) : mul.assoc
|
||
... = a * 1 : mul_inv_cancel Hb
|
||
... = a : mul_one
|
||
|
||
theorem div_mul_cancel (Hb : b ≠ 0) : a / b * b = a :=
|
||
calc
|
||
(a / b) * b = (a * b⁻¹) * b : rfl
|
||
... = a * (b⁻¹ * b) : mul.assoc
|
||
... = a * 1 : inv_mul_cancel Hb
|
||
... = a : mul_one
|
||
|
||
theorem div_add_div_same (Hc : c ≠ 0) : a / c + b / c = (a + b) / c :=
|
||
calc
|
||
(a / c) + (b / c) = (a * c⁻¹) + (b / c) : rfl
|
||
... = a * c⁻¹ + b * c⁻¹ : rfl
|
||
... = (a + b) * c⁻¹ : right_distrib
|
||
... = (a + b) / c : rfl
|
||
|
||
theorem inv_mul_add_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
|
||
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
|
||
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
|
||
/-calc
|
||
(1 / a) * (a + b) * (1 / b) = ((1 / a) * a + (1 / a) * b) * (1 / b) : left_distrib
|
||
... = (1 + (1 / a) * b) * (1 / b) : one_div_mul_cancel Ha
|
||
... = 1 * (1 / b) + (1 / a) * b * (1 / b) : right_distrib
|
||
... = 1 / b + (1 / a) * b * (1 / b) : one_mul
|
||
... = 1 / b + (1 / a) * (b * (1 / b)) : mul.assoc
|
||
... = 1 / b + (1 / a) * 1 : mul_one_div_cancel Hb
|
||
... = 1 / b + (1 / a) : mul_one
|
||
... = 1 / a + 1 / b : add.comm-/
|
||
|
||
theorem inv_mul_sub_mul_inv_eq_inv_add_inv (Ha : a ≠ 0) (Hb : b ≠ 0) :
|
||
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
|
||
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
|
||
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one]
|
||
|
||
theorem div_eq_one_iff_eq (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
|
||
iff.intro
|
||
(assume H1 : a / b = 1, symm (calc
|
||
b = 1 * b : one_mul
|
||
... = a / b * b : H1
|
||
... = a : div_mul_cancel Hb))
|
||
(assume H2 : a = b, calc
|
||
a / b = b / b : H2
|
||
... = 1 : div_self Hb)
|
||
|
||
end division_ring
|
||
|
||
structure field [class] (A : Type) extends division_ring A, comm_ring A
|
||
|
||
section field
|
||
variables [s : field A] {a b c d: A}
|
||
include s
|
||
|
||
-- I think of "div_cancel" has being something like a * b / b = a or a / b * b = a. The name
|
||
-- I chose is clunky, but it has the right prefix
|
||
theorem div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
|
||
have Ha : a ≠ 0, from and.left (mul_ne_zero_imp_ne_zero H),
|
||
symm (calc
|
||
1 / b = 1 * (1 / b) : one_mul
|
||
... = (a * a⁻¹) * (1 / b) : mul_inv_cancel Ha
|
||
... = a * (a⁻¹ * (1 / b)) : mul.assoc
|
||
... = a * ((1 / a) * (1 / b)) :inv_eq_one_div
|
||
... = a * (1 / (b * a)) : one_div_mul_one_div Ha Hb
|
||
... = a * (1 / (a * b)) : mul.comm
|
||
... = a * (a * b)⁻¹ : inv_eq_one_div
|
||
... = a / (a * b) : rfl)
|
||
|
||
theorem div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
|
||
have H1 : b * a ≠ 0, from mul_ne_zero_comm H,
|
||
calc
|
||
(b / (a * b)) = (b / (b * a)) : mul.comm
|
||
... = 1 / a : div_mul_right Ha H1
|
||
|
||
theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
|
||
calc
|
||
(a * b) / a = (b * a) / a : mul.comm
|
||
... = b : mul_div_cancel Ha
|
||
|
||
theorem mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a :=
|
||
calc
|
||
b * (a / b) = a / b * b : mul.comm
|
||
... = a : div_mul_cancel Hb
|
||
|
||
theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
|
||
have H : a * b ≠ 0, from (mul_ne_zero' Ha Hb),
|
||
symm (calc
|
||
(a + b) / (a * b)/- = (a + b) * (a * b)⁻¹ : rfl
|
||
...-/ = a * (a * b)⁻¹ + b * (a * b)⁻¹ : right_distrib
|
||
... = a / (a * b) + b * (a * b)⁻¹ : rfl
|
||
... = 1 / b + b * (a * b)⁻¹ : div_mul_right Hb H
|
||
... = 1 / b + b / (a * b) : rfl
|
||
... = 1 / b + 1 / a : div_mul_left Ha H
|
||
... = 1 / a + 1 / b : add.comm)
|
||
|
||
theorem div_mul_div (Hb : b ≠ 0) (Hd : d ≠ 0) : (a / b) * (c / d) = (a * c) / (b * d) :=
|
||
calc
|
||
(a / b) * (c / d) = (a * b⁻¹) * (c / d) : rfl
|
||
... = (a * b⁻¹) * (c * d⁻¹) : rfl
|
||
... = (a * c) * (d⁻¹ * b⁻¹) : by rewrite [2 mul.assoc, (mul.comm b⁻¹), mul.assoc]
|
||
... = (a * c) * (b * d)⁻¹ : mul_inv Hd Hb
|
||
... = (a * c) / (b * d) : rfl
|
||
|
||
theorem mul_div_mul_left (Hb : b ≠ 0) (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
|
||
have H : c * b ≠ 0, from mul_ne_zero' Hc Hb,
|
||
calc
|
||
(c * a) / (c * b) = (c / c) * (a / b) : div_mul_div Hc Hb
|
||
... = 1 * (a / b) : div_self Hc
|
||
... = a / b : one_mul
|
||
|
||
theorem mul_div_mul_right (Hb : b ≠ 0) (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
|
||
calc
|
||
(a * c) / (b * c) = (c * a) / (b * c) : mul.comm
|
||
... = (c * a) / (c * b) : mul.comm
|
||
... = a / b : mul_div_mul_left Hb Hc
|
||
|
||
theorem div_mul_eq_mul_div (Hc : c ≠ 0) : (b / c) * a = (b * a) / c :=
|
||
calc
|
||
(b / c) * a = (b * c⁻¹) * a : rfl
|
||
... = (b * a) * c⁻¹ : by rewrite [mul.assoc, (mul.comm c⁻¹), -mul.assoc ]
|
||
... = (b * a) / c : rfl
|
||
|
||
-- this one is odd -- I am not sure what to call it, but again, the prefix is right
|
||
theorem div_mul_eq_mul_div_comm (Hc : c ≠ 0) : (b / c) * a = b * (a / c) :=
|
||
calc
|
||
(b / c) * a = (b * a) / c : div_mul_eq_mul_div Hc
|
||
... = (b * a) / (1 * c) : one_mul
|
||
... = (b / 1) * (a / c) : div_mul_div (ne.symm zero_ne_one) Hc
|
||
... = b * (a / c) : div_one
|
||
|
||
theorem div_add_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
|
||
have H : b * d ≠ 0, from mul_ne_zero' Hb Hd,
|
||
calc
|
||
a / b + c / d = (a * d) / (b * d) + c / d : mul_div_mul_right Hb Hd
|
||
... = (a * d) / (b * d) + (b * c) / (b * d) : mul_div_mul_left Hd Hb
|
||
... = ((a * d) + (b * c)) / (b * d) : div_add_div_same H
|
||
|
||
|
||
theorem div_sub_div (Hb : b ≠ 0) (Hd : d ≠ 0) :
|
||
(a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) :=
|
||
calc
|
||
(a / b) - (c / d) = (a / b) + -1 * (c / d) : neg_eq_neg_one_mul
|
||
... = (a / b) + ((-1 * c) / d) : mul_div_assoc Hd
|
||
... = ((a * d) + (b * (-1 * c))) / (b * d) : div_add_div Hb Hd
|
||
... = ((a * d) + -1 * (b * c)) / (b * d) : by rewrite [-mul.assoc, (mul.comm b), mul.assoc]
|
||
... = ((a * d) + -(b * c)) / (b * d) : neg_eq_neg_one_mul
|
||
|
||
|
||
theorem mul_eq_mul_of_div_eq_div (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b :=
|
||
calc
|
||
a * d = a * 1 * d : by rewrite [-mul_one, mul.assoc, (mul.comm d), -mul.assoc]
|
||
... = (a * (b / b)) * d : div_self Hb
|
||
... = ((a / b) * b) * d : div_mul_eq_mul_div_comm Hb
|
||
... = ((c / d) * b) * d : H
|
||
... = ((c * b) / d) * d : div_mul_eq_mul_div Hd
|
||
... = c * b : div_mul_cancel Hd
|
||
|
||
end field
|
||
|
||
structure discrete_field [class] (A : Type) extends field A :=
|
||
(decidable_equality : ∀x y : A, decidable (x = y))
|
||
|
||
section discrete_field
|
||
variable [s : discrete_field A]
|
||
include s
|
||
variables {a b c : A}
|
||
|
||
definition decidable_eq [instance] (a b : A) : decidable (a = b) :=
|
||
@discrete_field.decidable_equality A s a b
|
||
|
||
theorem discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
|
||
(x y : A) (H : x * y = 0) : x = 0 ∨ y = 0 :=
|
||
decidable.by_cases
|
||
(assume H : x = 0, or.inl H)
|
||
(assume H1 : x ≠ 0,
|
||
or.inr (calc
|
||
y = 1 * y : one_mul
|
||
... = x⁻¹ * x * y : inv_mul_cancel H1
|
||
... = x⁻¹ * (x * y) : mul.assoc
|
||
... = x⁻¹ * 0 : H
|
||
... = 0 : mul_zero))
|
||
|
||
definition discrete_field.to_integral_domain [instance] [reducible] [coercion] :
|
||
integral_domain A :=
|
||
⦃ integral_domain, s,
|
||
eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄
|
||
|
||
example (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 :=
|
||
@mul_ne_zero A s a b H1 H2
|
||
|
||
end discrete_field
|
||
|
||
end algebra
|