cbc81ea6c5
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
14 lines
471 B
Text
14 lines
471 B
Text
import logic
|
|
using tactic
|
|
|
|
definition assump := eassumption
|
|
|
|
theorem tst1 {A : Type} {a b c : A} {p : A → A → Prop} (H1 : p a b) (H2 : p b c) : ∃ x, p a x ∧ p x c
|
|
:= by apply exists_intro; apply and_intro; assump; assump
|
|
|
|
theorem tst2 {A : Type} {a b c d : A} {p : A → A → Prop} (Ha : p a c) (H1 : p a b) (Hb : p b d) (H2 : p b c) : ∃ x, p a x ∧ p x c
|
|
:= by apply exists_intro; apply and_intro; assump; assump
|
|
|
|
(*
|
|
print(get_env():find("tst2"):value())
|
|
*)
|