278 lines
10 KiB
Text
278 lines
10 KiB
Text
/-
|
||
Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jakob von Raumer
|
||
|
||
Ported from Coq HoTT
|
||
-/
|
||
|
||
prelude
|
||
import .trunc .equiv .ua
|
||
open eq is_trunc sigma function is_equiv equiv prod unit prod.ops lift
|
||
|
||
/-
|
||
We now prove that funext follows from a couple of weaker-looking forms
|
||
of function extensionality.
|
||
|
||
This proof is originally due to Voevodsky; it has since been simplified
|
||
by Peter Lumsdaine and Michael Shulman.
|
||
-/
|
||
|
||
definition funext.{l k} :=
|
||
Π ⦃A : Type.{l}⦄ {P : A → Type.{k}} (f g : Π x, P x), is_equiv (@apd10 A P f g)
|
||
|
||
-- Naive funext is the simple assertion that pointwise equal functions are equal.
|
||
definition naive_funext :=
|
||
Π ⦃A : Type⦄ {P : A → Type} (f g : Πx, P x), (f ~ g) → f = g
|
||
|
||
-- Weak funext says that a product of contractible types is contractible.
|
||
definition weak_funext :=
|
||
Π ⦃A : Type⦄ (P : A → Type) [H: Πx, is_contr (P x)], is_contr (Πx, P x)
|
||
|
||
definition weak_funext_of_naive_funext : naive_funext → weak_funext :=
|
||
(λ nf A P (Pc : Πx, is_contr (P x)),
|
||
let c := λx, center (P x) in
|
||
is_contr.mk c (λ f,
|
||
have eq' : (λx, center (P x)) ~ f,
|
||
from (λx, center_eq (f x)),
|
||
have eq : (λx, center (P x)) = f,
|
||
from nf A P (λx, center (P x)) f eq',
|
||
eq
|
||
)
|
||
)
|
||
|
||
/-
|
||
The less obvious direction is that weak_funext implies funext
|
||
(and hence all three are logically equivalent). The point is that under weak
|
||
funext, the space of "pointwise homotopies" has the same universal property as
|
||
the space of paths.
|
||
-/
|
||
|
||
section
|
||
universe variables l k
|
||
parameters [wf : weak_funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} (f : Π x, B x)
|
||
|
||
definition is_contr_sigma_homotopy : is_contr (Σ (g : Π x, B x), f ~ g) :=
|
||
is_contr.mk (sigma.mk f (homotopy.refl f))
|
||
(λ dp, sigma.rec_on dp
|
||
(λ (g : Π x, B x) (h : f ~ g),
|
||
let r := λ (k : Π x, Σ y, f x = y),
|
||
@sigma.mk _ (λg, f ~ g)
|
||
(λx, pr1 (k x)) (λx, pr2 (k x)) in
|
||
let s := λ g h x, @sigma.mk _ (λy, f x = y) (g x) (h x) in
|
||
have t1 : Πx, is_contr (Σ y, f x = y),
|
||
from (λx, !is_contr_sigma_eq),
|
||
have t2 : is_contr (Πx, Σ y, f x = y),
|
||
from !wf,
|
||
have t3 : (λ x, @sigma.mk _ (λ y, f x = y) (f x) idp) = s g h,
|
||
from @eq_of_is_contr (Π x, Σ y, f x = y) t2 _ _,
|
||
have t4 : r (λ x, sigma.mk (f x) idp) = r (s g h),
|
||
from ap r t3,
|
||
have endt : sigma.mk f (homotopy.refl f) = sigma.mk g h,
|
||
from t4,
|
||
endt
|
||
)
|
||
)
|
||
local attribute is_contr_sigma_homotopy [instance]
|
||
|
||
parameters (Q : Π g (h : f ~ g), Type) (d : Q f (homotopy.refl f))
|
||
|
||
definition homotopy_ind (g : Πx, B x) (h : f ~ g) : Q g h :=
|
||
@transport _ (λ gh, Q (pr1 gh) (pr2 gh)) (sigma.mk f (homotopy.refl f)) (sigma.mk g h)
|
||
(@eq_of_is_contr _ is_contr_sigma_homotopy _ _) d
|
||
|
||
local attribute weak_funext [reducible]
|
||
local attribute homotopy_ind [reducible]
|
||
definition homotopy_ind_comp : homotopy_ind f (homotopy.refl f) = d :=
|
||
(@hprop_eq_of_is_contr _ _ _ _ !eq_of_is_contr idp)⁻¹ ▸ idp
|
||
end
|
||
|
||
/- Now the proof is fairly easy; we can just use the same induction principle on both sides. -/
|
||
section
|
||
universe variables l k
|
||
|
||
local attribute weak_funext [reducible]
|
||
theorem funext_of_weak_funext (wf : weak_funext.{l k}) : funext.{l k} :=
|
||
λ A B f g,
|
||
let eq_to_f := (λ g' x, f = g') in
|
||
let sim2path := homotopy_ind f eq_to_f idp in
|
||
assert t1 : sim2path f (homotopy.refl f) = idp,
|
||
proof homotopy_ind_comp f eq_to_f idp qed,
|
||
assert t2 : apd10 (sim2path f (homotopy.refl f)) = (homotopy.refl f),
|
||
proof ap apd10 t1 qed,
|
||
have left_inv : apd10 ∘ (sim2path g) ~ id,
|
||
proof (homotopy_ind f (λ g' x, apd10 (sim2path g' x) = x) t2) g qed,
|
||
have right_inv : (sim2path g) ∘ apd10 ~ id,
|
||
from (λ h, eq.rec_on h (homotopy_ind_comp f _ idp)),
|
||
is_equiv.adjointify apd10 (sim2path g) left_inv right_inv
|
||
|
||
definition funext_from_naive_funext : naive_funext → funext :=
|
||
compose funext_of_weak_funext weak_funext_of_naive_funext
|
||
end
|
||
|
||
section
|
||
universe variables l
|
||
|
||
private theorem ua_isequiv_postcompose {A B : Type.{l}} {C : Type}
|
||
{w : A → B} [H0 : is_equiv w] : is_equiv (@compose C A B w) :=
|
||
let w' := equiv.mk w H0 in
|
||
let eqinv : A = B := ((@is_equiv.inv _ _ _ (univalence A B)) w') in
|
||
let eq' := equiv_of_eq eqinv in
|
||
is_equiv.adjointify (@compose C A B w)
|
||
(@compose C B A (is_equiv.inv w))
|
||
(λ (x : C → B),
|
||
have eqretr : eq' = w',
|
||
from (@right_inv _ _ (@equiv_of_eq A B) (univalence A B) w'),
|
||
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
|
||
from inv_eq eq' w' eqretr,
|
||
have eqfin : (to_fun eq') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
|
||
from (λ p,
|
||
(@eq.rec_on Type.{l} A
|
||
(λ B' p', Π (x' : C → B'), (to_fun (equiv_of_eq p'))
|
||
∘ ((to_fun (equiv_of_eq p'))⁻¹ ∘ x') = x')
|
||
B p (λ x', idp))
|
||
) eqinv x,
|
||
have eqfin' : (to_fun w') ∘ ((to_fun eq')⁻¹ ∘ x) = x,
|
||
from eqretr ▸ eqfin,
|
||
have eqfin'' : (to_fun w') ∘ ((to_fun w')⁻¹ ∘ x) = x,
|
||
from invs_eq ▸ eqfin',
|
||
eqfin''
|
||
)
|
||
(λ (x : C → A),
|
||
have eqretr : eq' = w',
|
||
from (@right_inv _ _ (@equiv_of_eq A B) (univalence A B) w'),
|
||
have invs_eq : (to_fun eq')⁻¹ = (to_fun w')⁻¹,
|
||
from inv_eq eq' w' eqretr,
|
||
have eqfin : (to_fun eq')⁻¹ ∘ ((to_fun eq') ∘ x) = x,
|
||
from (λ p, eq.rec_on p idp) eqinv,
|
||
have eqfin' : (to_fun eq')⁻¹ ∘ ((to_fun w') ∘ x) = x,
|
||
from eqretr ▸ eqfin,
|
||
have eqfin'' : (to_fun w')⁻¹ ∘ ((to_fun w') ∘ x) = x,
|
||
from invs_eq ▸ eqfin',
|
||
eqfin''
|
||
)
|
||
|
||
-- We are ready to prove functional extensionality,
|
||
-- starting with the naive non-dependent version.
|
||
private definition diagonal [reducible] (B : Type) : Type
|
||
:= Σ xy : B × B, pr₁ xy = pr₂ xy
|
||
|
||
private definition isequiv_src_compose {A B : Type}
|
||
: @is_equiv (A → diagonal B)
|
||
(A → B)
|
||
(compose (pr₁ ∘ pr1)) :=
|
||
@ua_isequiv_postcompose _ _ _ (pr₁ ∘ pr1)
|
||
(is_equiv.adjointify (pr₁ ∘ pr1)
|
||
(λ x, sigma.mk (x , x) idp) (λx, idp)
|
||
(λ x, sigma.rec_on x
|
||
(λ xy, prod.rec_on xy
|
||
(λ b c p, eq.rec_on p idp))))
|
||
|
||
private definition isequiv_tgt_compose {A B : Type}
|
||
: @is_equiv (A → diagonal B)
|
||
(A → B)
|
||
(compose (pr₂ ∘ pr1)) :=
|
||
@ua_isequiv_postcompose _ _ _ (pr2 ∘ pr1)
|
||
(is_equiv.adjointify (pr2 ∘ pr1)
|
||
(λ x, sigma.mk (x , x) idp) (λx, idp)
|
||
(λ x, sigma.rec_on x
|
||
(λ xy, prod.rec_on xy
|
||
(λ b c p, eq.rec_on p idp))))
|
||
|
||
set_option class.conservative false
|
||
theorem nondep_funext_from_ua {A : Type} {B : Type}
|
||
: Π {f g : A → B}, f ~ g → f = g :=
|
||
(λ (f g : A → B) (p : f ~ g),
|
||
let d := λ (x : A), sigma.mk (f x , f x) idp in
|
||
let e := λ (x : A), sigma.mk (f x , g x) (p x) in
|
||
let precomp1 := compose (pr₁ ∘ pr1) in
|
||
have equiv1 [visible] : is_equiv precomp1,
|
||
from @isequiv_src_compose A B,
|
||
have equiv2 [visible] : Π x y, is_equiv (ap precomp1),
|
||
from is_equiv.is_equiv_ap precomp1,
|
||
have H' : Π (x y : A → diagonal B),
|
||
pr₁ ∘ pr1 ∘ x = pr₁ ∘ pr1 ∘ y → x = y,
|
||
from (λ x y, is_equiv.inv (ap precomp1)),
|
||
have eq2 : pr₁ ∘ pr1 ∘ d = pr₁ ∘ pr1 ∘ e,
|
||
from idp,
|
||
have eq0 : d = e,
|
||
from H' d e eq2,
|
||
have eq1 : (pr₂ ∘ pr1) ∘ d = (pr₂ ∘ pr1) ∘ e,
|
||
from ap _ eq0,
|
||
eq1
|
||
)
|
||
|
||
end
|
||
|
||
-- Now we use this to prove weak funext, which as we know
|
||
-- implies (with dependent eta) also the strong dependent funext.
|
||
theorem weak_funext_of_ua : weak_funext :=
|
||
(λ (A : Type) (P : A → Type) allcontr,
|
||
let U := (λ (x : A), lift unit) in
|
||
have pequiv : Π (x : A), P x ≃ unit,
|
||
from (λ x, @equiv_unit_of_is_contr (P x) (allcontr x)),
|
||
have psim : Π (x : A), P x = U x,
|
||
from (λ x, eq_of_equiv_lift (pequiv x)),
|
||
have p : P = U,
|
||
from @nondep_funext_from_ua A Type P U psim,
|
||
have tU' : is_contr (A → lift unit),
|
||
from is_contr.mk (λ x, up ⋆)
|
||
(λ f, nondep_funext_from_ua (λa, by induction (f a) with u;induction u;reflexivity)),
|
||
have tU : is_contr (Π x, U x),
|
||
from tU',
|
||
have tlast : is_contr (Πx, P x),
|
||
from p⁻¹ ▸ tU,
|
||
tlast)
|
||
|
||
-- In the following we will proof function extensionality using the univalence axiom
|
||
definition funext_of_ua : funext :=
|
||
funext_of_weak_funext (@weak_funext_of_ua)
|
||
|
||
variables {A : Type} {P : A → Type} {f g : Π x, P x}
|
||
|
||
namespace funext
|
||
theorem is_equiv_apd [instance] (f g : Π x, P x) : is_equiv (@apd10 A P f g) :=
|
||
funext_of_ua f g
|
||
end funext
|
||
|
||
open funext
|
||
|
||
definition eq_equiv_homotopy : (f = g) ≃ (f ~ g) :=
|
||
equiv.mk apd10 _
|
||
|
||
definition eq_of_homotopy [reducible] : f ~ g → f = g :=
|
||
(@apd10 A P f g)⁻¹
|
||
|
||
definition apd10_eq_of_homotopy (p : f ~ g) : apd10 (eq_of_homotopy p) = p :=
|
||
right_inv apd10 p
|
||
|
||
definition eq_of_homotopy_apd10 (p : f = g) : eq_of_homotopy (apd10 p) = p :=
|
||
left_inv apd10 p
|
||
|
||
definition eq_of_homotopy_idp (f : Π x, P x) : eq_of_homotopy (λx : A, idpath (f x)) = idpath f :=
|
||
is_equiv.left_inv apd10 idp
|
||
|
||
definition naive_funext_of_ua : naive_funext :=
|
||
λ A P f g h, eq_of_homotopy h
|
||
|
||
protected definition homotopy.rec_on [recursor] {Q : (f ~ g) → Type} (p : f ~ g)
|
||
(H : Π(q : f = g), Q (apd10 q)) : Q p :=
|
||
right_inv apd10 p ▸ H (eq_of_homotopy p)
|
||
|
||
protected definition homotopy.rec_on_idp [recursor] {Q : Π{g}, (f ~ g) → Type} {g : Π x, P x} (p : f ~ g) (H : Q (homotopy.refl f)) : Q p :=
|
||
homotopy.rec_on p (λq, eq.rec_on q H)
|
||
|
||
definition eq_of_homotopy_inv {f g : Π x, P x} (H : f ~ g)
|
||
: eq_of_homotopy (λx, (H x)⁻¹) = (eq_of_homotopy H)⁻¹ :=
|
||
begin
|
||
apply homotopy.rec_on_idp H,
|
||
rewrite [+eq_of_homotopy_idp]
|
||
end
|
||
|
||
definition eq_of_homotopy_con {f g h : Π x, P x} (H1 : f ~ g) (H2 : g ~ h)
|
||
: eq_of_homotopy (λx, H1 x ⬝ H2 x) = eq_of_homotopy H1 ⬝ eq_of_homotopy H2 :=
|
||
begin
|
||
apply homotopy.rec_on_idp H1,
|
||
apply homotopy.rec_on_idp H2,
|
||
rewrite [+eq_of_homotopy_idp]
|
||
end
|