64 lines
2.8 KiB
Text
64 lines
2.8 KiB
Text
/-
|
||
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura, Jeremy Avigad
|
||
|
||
The power function on the natural numbers.
|
||
-/
|
||
import data.nat.basic data.nat.order data.nat.div algebra.group_power
|
||
|
||
namespace nat
|
||
|
||
section migrate_algebra
|
||
open [classes] algebra
|
||
local attribute nat.comm_semiring [instance]
|
||
local attribute nat.linear_ordered_semiring [instance]
|
||
|
||
definition pow (a : ℕ) (n : ℕ) : ℕ := algebra.pow a n
|
||
infix ^ := pow
|
||
|
||
migrate from algebra with nat
|
||
replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow
|
||
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
|
||
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
|
||
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
|
||
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right
|
||
end migrate_algebra
|
||
|
||
-- TODO: eventually this will be subsumed under the algebraic theorems
|
||
|
||
theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 :=
|
||
show a * a = pow a (succ (succ zero)), from
|
||
by rewrite [*pow_succ, *pow_zero, one_mul]
|
||
|
||
theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c
|
||
| a 0 0 h₁ h₂ := rfl
|
||
| a (succ b) 0 h₁ h₂ :=
|
||
assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂),
|
||
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
|
||
absurd h₁ !lt.irrefl
|
||
| a 0 (succ c) h₁ h₂ :=
|
||
assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)),
|
||
assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁,
|
||
absurd h₁ !lt.irrefl
|
||
| a (succ b) (succ c) h₁ h₂ :=
|
||
assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial),
|
||
assert beqc : pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero ane0) h₂),
|
||
by rewrite [pow_cancel_left h₁ beqc]
|
||
|
||
theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b
|
||
| a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)]
|
||
| a (succ b) h := by rewrite [pow_succ', mul_div_cancel_left _ (pos_of_ne_zero h)]
|
||
|
||
lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i ∣ i^n
|
||
| i 0 h := absurd h !lt.irrefl
|
||
| i (succ n) h := by rewrite [pow_succ]; apply dvd_mul_left
|
||
|
||
lemma dvd_pow_of_dvd_of_pos : ∀ {i j n : nat}, i ∣ j → n > 0 → i ∣ j^n
|
||
| i j 0 h₁ h₂ := absurd h₂ !lt.irrefl
|
||
| i j (succ n) h₁ h₂ := by rewrite [pow_succ]; apply dvd_mul_of_dvd_right h₁
|
||
|
||
lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i^n) mod i = 0 :=
|
||
iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h)
|
||
|
||
end nat
|