41 lines
1.3 KiB
Text
41 lines
1.3 KiB
Text
-- Copyright (c) 2014 Jakob von Raumer. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Jakob von Raumer
|
|
|
|
import ..precategory.basic ..precategory.morphism
|
|
import hott.equiv hott.trunc
|
|
|
|
open precategory morphism is_equiv path truncation nat sigma sigma.ops
|
|
|
|
-- A category is a precategory extended by a witness,
|
|
-- that the function assigning to each isomorphism a path,
|
|
-- is an equivalecnce.
|
|
structure category [class] (ob : Type) extends (precategory ob) :=
|
|
(iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b))
|
|
|
|
namespace category
|
|
variables {ob : Type} {C : category ob} {a b : ob}
|
|
include C
|
|
|
|
-- Make iso_of_path_equiv a class instance
|
|
-- TODO: Unsafe class instance?
|
|
instance [persistent] iso_of_path_equiv
|
|
|
|
definition path_of_iso {a b : ob} : a ≅ b → a ≈ b :=
|
|
iso_of_path⁻¹
|
|
|
|
definition foo {a b : ob} :
|
|
|
|
definition ob_1_type : is_trunc -2 .+1 .+1 .+1 ob :=
|
|
begin
|
|
apply is_trunc_succ, intros (a, b),
|
|
/-fapply trunc_equiv,
|
|
exact (@path_of_iso ob C a b),
|
|
apply inv_closed,
|
|
exact sorry,-/
|
|
end
|
|
|
|
end category
|
|
|
|
-- Bundled version of categories
|
|
inductive Category : Type := mk : Π (ob : Type), category ob → Category
|