lean2/tests/lean/elab1.lean.expected.out
Leonardo de Moura fa03ae2a26 fix(library/elaborator): strength elaborator procedure for handling equality and convertability constraints
This commit improves the condition for showing that an equality(and convertability) constraint cannot be solved. A nice consequence is that Lean produces nicer error messages. For example, the error message for unit test elab1.lean is more informative.

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-12-06 13:04:34 -08:00

688 lines
29 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Assumed: f
Failed to solve
⊢ (?M::1 ≈ λ x : , x) ⊕ (?M::1 ≈ nat_to_int) ⊕ (?M::1 ≈ nat_to_real)
(line: 4: pos: 8) Coercion for
10
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ (?M::5[inst:0 (10)]) 10 ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
x : ⊢ λ x : , ≈ ?M::5
Destruct/Decompose
x : ≈ ?M::5 x
Destruct/Decompose
≈ Π x : ?M::4, ?M::5 x
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 x
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ λ x : , x
Assumption 0
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ (?M::5[inst:0 (10)]) 10 ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
_ : ⊢ λ x : , ≈ ?M::5
Destruct/Decompose
_ : ≈ ?M::5 _
Destruct/Decompose
≈ Π x : ?M::4, ?M::5 x
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 x
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ nat_to_int
Assumption 1
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
≺ ?M::0
Substitution
⊢ (?M::5[inst:0 (10)]) 10 ≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
?M::1 10
Assignment
_ : ⊢ λ x : , ≈ ?M::5
Destruct/Decompose
_ : ≈ ?M::5 _
Destruct/Decompose
≈ Π x : ?M::4, ?M::5 x
Substitution
⊢ ?M::3 ≈ Π x : ?M::4, ?M::5 x
Function expected at
?M::1 10
Assignment
≺ ?M::3
Propagate type, ?M::1 : ?M::3
Assignment
⊢ ?M::1 ≈ nat_to_real
Assumption 2
Assumed: g
Error (line: 7, pos: 8) unexpected metavariable occurrence
Assumed: h
Failed to solve
x : ?M::0, A : Type ⊢ ?M::0[lift:0:2] ≺ A
(line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of
h
with arguments:
A
x
Assumed: my_eq
Failed to solve
A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C
(line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of
my_eq
with arguments:
C
a
b
Assumed: a
Assumed: b
Assumed: H
Failed to solve
⊢ if ?M::0 ?M::1 ≺ b
Normalize
⊢ ?M::0 ⇒ ?M::1 ≺ b
(line: 20: pos: 18) Type of definition 't1' must be convertible to expected type.
Failed to solve
⊢ b ≈ a
Substitution
⊢ b ≈ ?M::3
Destruct/Decompose
⊢ b == b ≺ ?M::3 == ?M::4
(line: 22: pos: 22) Type of argument 6 must be convertible to the expected type in the application of
Trans::explicit
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Assignment
⊢ a ≈ ?M::3
Destruct/Decompose
⊢ a == a ≺ ?M::2 == ?M::3
(line: 22: pos: 22) Type of argument 5 must be convertible to the expected type in the application of
Trans::explicit
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Failed to solve
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ Type 1) ⊕ (?M::0 ≈ Type 2) ⊕ (?M::0 ≈ Type M) ⊕ (?M::0 ≈ Type U)
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (?M::1 ≈ Type 1) ⊕ (?M::1 ≈ Type 2) ⊕ (?M::1 ≈ Type 3) ⊕ (?M::1 ≈ Type M) ⊕ (?M::1 ≈ Type U)
Destruct/Decompose
⊢ Type 1 ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 0
Failed to solve
⊢ Type 1 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 1
Assumption 1
Failed to solve
⊢ Type 2 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 2
Assumption 2
Failed to solve
⊢ Type 3 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 3
Assumption 3
Failed to solve
⊢ Type M ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M
Assumption 4
Failed to solve
⊢ Type U ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U
Assumption 5
Failed to solve
⊢ (?M::1 ≈ Type 2) ⊕ (?M::1 ≈ Type 3) ⊕ (?M::1 ≈ Type 4) ⊕ (?M::1 ≈ Type M) ⊕ (?M::1 ≈ Type U)
Destruct/Decompose
⊢ Type 2 ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type 1
Assumption 6
Failed to solve
⊢ Type 2 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 2
Assumption 7
Failed to solve
⊢ Type 3 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 3
Assumption 8
Failed to solve
⊢ Type 4 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 4
Assumption 9
Failed to solve
⊢ Type M ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M
Assumption 10
Failed to solve
⊢ Type U ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U
Assumption 11
Failed to solve
⊢ (?M::1 ≈ Type 3) ⊕ (?M::1 ≈ Type 4) ⊕ (?M::1 ≈ Type 5) ⊕ (?M::1 ≈ Type M) ⊕ (?M::1 ≈ Type U)
Destruct/Decompose
⊢ Type 3 ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type 2
Assumption 12
Failed to solve
⊢ Type 3 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 3
Assumption 13
Failed to solve
⊢ Type 4 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 4
Assumption 14
Failed to solve
⊢ Type 5 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type 5
Assumption 15
Failed to solve
⊢ Type M ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M
Assumption 16
Failed to solve
⊢ Type U ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U
Assumption 17
Failed to solve
(?M::1 ≈ Type M+1) ⊕ (?M::1 ≈ Type M+2) ⊕ (?M::1 ≈ Type M+3) ⊕ (?M::1 ≈ Type M) ⊕ (?M::1 ≈ Type U)
Destruct/Decompose
⊢ Type M+1 ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type M
Assumption 18
Failed to solve
⊢ Type M+1 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M+1
Assumption 19
Failed to solve
⊢ Type M+2 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M+2
Assumption 20
Failed to solve
⊢ Type M+3 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M+3
Assumption 21
Failed to solve
⊢ Type M ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M
Assumption 22
Failed to solve
⊢ Type U ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U
Assumption 23
Failed to solve
(?M::1 ≈ Type U+1) ⊕ (?M::1 ≈ Type U+2) ⊕ (?M::1 ≈ Type U+3) ⊕ (?M::1 ≈ Type M) ⊕ (?M::1 ≈ Type U)
Destruct/Decompose
⊢ Type U+1 ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type U
Assumption 24
Failed to solve
⊢ Type U+1 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U+1
Assumption 25
Failed to solve
⊢ Type U+2 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U+2
Assumption 26
Failed to solve
⊢ Type U+3 ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U+3
Assumption 27
Failed to solve
⊢ Type M ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type M
Assumption 28
Failed to solve
⊢ Type U ≺ Type
Substitution
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M::0
Bool
Bool
Assignment
⊢ ?M::1 ≈ Type U
Assumption 29
Failed to solve
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ a ≺ if (if a b ) a
Normalize
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ a ≺ (a ⇒ b) ⇒ a
Substitution
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ a ≺ ?M::5[lift:0:1]
Substitution
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ ?M::8 ≺ ?M::5[lift:0:1]
Destruct/Decompose
a : Bool, b : Bool, H : ?M::2 ⊢ Π H_na : ?M::7, ?M::8 ≺ Π _ : ?M::4, ?M::5[lift:0:1]
(line: 27: pos: 21) Type of argument 6 must be convertible to the expected type in the application of
DisjCases::explicit
with arguments:
?M::3
?M::4
?M::5
EM a
λ H_a : ?M::6, H
λ H_na : ?M::7, NotImp1 (MT H H_na)
Assignment
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ a ≈ ?M::8
Destruct/Decompose
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ if a b ≈ if ?M::8 ?M::9
Normalize
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ if a b ≈ ?M::8 ⇒ ?M::9
Substitution
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ if a b ≈ ?M::10
Destruct/Decompose
a : Bool,
b : Bool,
H : ?M::2,
H_na : ?M::7 ⊢
if (if a b ) a ≺ if ?M::10 ?M::11
Normalize
a : Bool,
b : Bool,
H : ?M::2,
H_na : ?M::7 ⊢
(a ⇒ b) ⇒ a ≺ if ?M::10 ?M::11
Substitution
a : Bool,
b : Bool,
H : ?M::2,
H_na : ?M::7 ⊢
?M::2[lift:0:2] ≺ if ?M::10 ?M::11
Normalize
a : Bool,
b : Bool,
H : ?M::2,
H_na : ?M::7 ⊢
?M::2[lift:0:2] ≺ ?M::10 ⇒ ?M::11
(line: 29: pos: 48) Type of argument 3 must be convertible to the expected type in the application of
MT::explicit
with arguments:
?M::10
?M::11
H
H_na
Normalize assignment
?M::0
Assignment
a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0
Destruct/Decompose
a : Bool,
b : Bool ⊢
Π H : ?M::2, ?M::5 ≺ Π _ : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
Discharge::explicit
with arguments:
?M::0
?M::1
λ H : ?M::2,
DisjCases
(EM a)
(λ H_a : ?M::6, H)
(λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢
Π b : Bool, ?M::0 ⇒ ?M::1 ≺
Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
Π a b : Bool, ?M::0 ⇒ ?M::1 ≺
Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.
Assignment
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ ?M::10 ≈ ?M::8 ⇒ ?M::9
Destruct/Decompose
a : Bool, b : Bool, H : ?M::2, H_na : ?M::7 ⊢ ¬ ?M::10 ≺ ¬ (?M::8 ⇒ ?M::9)
(line: 29: pos: 40) Type of argument 3 must be convertible to the expected type in the application of
NotImp1::explicit
with arguments:
?M::8
?M::9
MT H H_na
Assignment
a : Bool, b : Bool, H : ?M::2 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5
Normalize
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1]
Substitution
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ ?M::2[lift:0:2] ≺ ?M::5[lift:0:1]
Destruct/Decompose
a : Bool,
b : Bool,
H : ?M::2 ⊢
Π H_a : ?M::6, ?M::2[lift:0:2] ≺ Π _ : ?M::3, ?M::5[lift:0:1]
(line: 27: pos: 21) Type of argument 5 must be convertible to the expected type in the application of
DisjCases::explicit
with arguments:
?M::3
?M::4
?M::5
EM a
λ H_a : ?M::6, H
λ H_na : ?M::7, NotImp1 (MT H H_na)
Normalize assignment
?M::0
Assignment
a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0
Destruct/Decompose
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π _ : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
Discharge::explicit
with arguments:
?M::0
?M::1
λ H : ?M::2,
DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.