lean2/hott/algebra/category/nat_trans.hlean

128 lines
5.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn, Jakob von Raumer
-/
import .functor .iso
open eq category functor is_trunc equiv sigma.ops sigma is_equiv function pi funext iso
structure nat_trans {C D : Precategory} (F G : C ⇒ D) :=
(natural_map : Π (a : C), hom (F a) (G a))
(naturality : Π {a b : C} (f : hom a b), G f ∘ natural_map a = natural_map b ∘ F f)
namespace nat_trans
infixl `⟹`:25 := nat_trans -- \==>
variables {B C D E : Precategory} {F G H I : C ⇒ D} {F' G' : D ⇒ E}
attribute natural_map [coercion]
protected definition compose [reducible] (η : G ⟹ H) (θ : F ⟹ G) : F ⟹ H :=
nat_trans.mk
(λ a, η a ∘ θ a)
(λ a b f,
abstract calc
H f ∘ (η a ∘ θ a) = (H f ∘ η a) ∘ θ a : by rewrite assoc
... = (η b ∘ G f) ∘ θ a : by rewrite naturality
... = η b ∘ (G f ∘ θ a) : by rewrite assoc
... = η b ∘ (θ b ∘ F f) : by rewrite naturality
... = (η b ∘ θ b) ∘ F f : by rewrite assoc
end)
infixr `∘n`:60 := nat_trans.compose
protected definition id [reducible] {C D : Precategory} {F : functor C D} : nat_trans F F :=
mk (λa, id) (λa b f, !id_right ⬝ !id_left⁻¹)
protected definition ID [reducible] {C D : Precategory} (F : functor C D) : nat_trans F F :=
(@nat_trans.id C D F)
definition nat_trans_mk_eq {η₁ η₂ : Π (a : C), hom (F a) (G a)}
(nat₁ : Π (a b : C) (f : hom a b), G f ∘ η₁ a = η₁ b ∘ F f)
(nat₂ : Π (a b : C) (f : hom a b), G f ∘ η₂ a = η₂ b ∘ F f)
(p : η₁ η₂)
: nat_trans.mk η₁ nat₁ = nat_trans.mk η₂ nat₂ :=
apd011 nat_trans.mk (eq_of_homotopy p) !is_hprop.elim
definition nat_trans_eq {η₁ η₂ : F ⟹ G} : natural_map η₁ natural_map η₂ → η₁ = η₂ :=
nat_trans.rec_on η₁ (λf₁ nat₁, nat_trans.rec_on η₂ (λf₂ nat₂ p, !nat_trans_mk_eq p))
protected definition assoc (η₃ : H ⟹ I) (η₂ : G ⟹ H) (η₁ : F ⟹ G) :
η₃ ∘n (η₂ ∘n η₁) = (η₃ ∘n η₂) ∘n η₁ :=
nat_trans_eq (λa, !assoc)
protected definition id_left (η : F ⟹ G) : nat_trans.id ∘n η = η :=
nat_trans_eq (λa, !id_left)
protected definition id_right (η : F ⟹ G) : η ∘n nat_trans.id = η :=
nat_trans_eq (λa, !id_right)
protected definition sigma_char (F G : C ⇒ D) :
(Σ (η : Π (a : C), hom (F a) (G a)), Π (a b : C) (f : hom a b), G f ∘ η a = η b ∘ F f) ≃ (F ⟹ G) :=
begin
fapply equiv.mk,
-- TODO(Leo): investigate why we need to use rexact in the following line
{intro S, apply nat_trans.mk, rexact (S.2)},
fapply adjointify,
intro H,
fapply sigma.mk,
intro a, exact (H a),
intro a b f, exact (naturality H f),
intro η, apply nat_trans_eq, intro a, apply idp,
intro S,
fapply sigma_eq,
{ apply eq_of_homotopy, intro a, apply idp},
{ apply is_hprop.elimo}
end
definition is_hset_nat_trans [instance] : is_hset (F ⟹ G) :=
by apply is_trunc_is_equiv_closed; apply (equiv.to_is_equiv !nat_trans.sigma_char)
definition nat_trans_functor_compose [reducible] (η : G ⟹ H) (F : E ⇒ C) : G ∘f F ⟹ H ∘f F :=
nat_trans.mk
(λ a, η (F a))
(λ a b f, naturality η (F f))
definition functor_nat_trans_compose [reducible] (F : D ⇒ E) (η : G ⟹ H) : F ∘f G ⟹ F ∘f H :=
nat_trans.mk
(λ a, F (η a))
(λ a b f, calc
F (H f) ∘ F (η a) = F (H f ∘ η a) : by rewrite respect_comp
... = F (η b ∘ G f) : by rewrite (naturality η f)
... = F (η b) ∘ F (G f) : by rewrite respect_comp)
infixr `∘nf`:62 := nat_trans_functor_compose
infixr `∘fn`:62 := functor_nat_trans_compose
definition nf_fn_eq_fn_nf_pt (η : F ⟹ G) (θ : F' ⟹ G') (c : C)
: (θ (G c)) ∘ (F' (η c)) = (G' (η c)) ∘ (θ (F c)) :=
(naturality θ (η c))⁻¹
definition nf_fn_eq_fn_nf (η : F ⟹ G) (θ : F' ⟹ G')
: (θ ∘nf G) ∘n (F' ∘fn η) = (G' ∘fn η) ∘n (θ ∘nf F) :=
nat_trans_eq (λc, !nf_fn_eq_fn_nf_pt)
definition fn_n_distrib (F' : D ⇒ E) (η : G ⟹ H) (θ : F ⟹ G)
: F' ∘fn (η ∘n θ) = (F' ∘fn η) ∘n (F' ∘fn θ) :=
nat_trans_eq (λc, !respect_comp)
definition n_nf_distrib (η : G ⟹ H) (θ : F ⟹ G) (F' : B ⇒ C)
: (η ∘n θ) ∘nf F' = (η ∘nf F') ∘n (θ ∘nf F') :=
nat_trans_eq (λc, idp)
definition fn_id (F' : D ⇒ E) : F' ∘fn nat_trans.ID F = nat_trans.id :=
nat_trans_eq (λc, !respect_id)
definition id_nf (F' : B ⇒ C) : nat_trans.ID F ∘nf F' = nat_trans.id :=
nat_trans_eq (λc, idp)
definition id_fn (η : G ⟹ H) (c : C) : (functor.id ∘fn η) c = η c :=
idp
definition nf_id (η : G ⟹ H) (c : C) : (η ∘nf functor.id) c = η c :=
idp
definition nat_trans_of_eq [reducible] (p : F = G) : F ⟹ G :=
nat_trans.mk (λc, hom_of_eq (ap010 to_fun_ob p c))
(λa b f, eq.rec_on p (!id_right ⬝ !id_left⁻¹))
end nat_trans