1a67e69678
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
31 lines
No EOL
1.3 KiB
Text
31 lines
No EOL
1.3 KiB
Text
----------------------------------------------------------------------------------------------------
|
||
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura
|
||
----------------------------------------------------------------------------------------------------
|
||
|
||
import logic.connectives.prop
|
||
|
||
namespace equivalence
|
||
section
|
||
parameter {A : Type}
|
||
parameter p : A → A → Prop
|
||
infix `∼`:50 := p
|
||
definition reflexive := ∀a, a ∼ a
|
||
definition symmetric := ∀a b, a ∼ b → b ∼ a
|
||
definition transitive := ∀a b c, a ∼ b → b ∼ c → a ∼ c
|
||
end
|
||
|
||
inductive equivalence {A : Type} (p : A → A → Prop) : Prop :=
|
||
| equivalence_intro : reflexive p → symmetric p → transitive p → equivalence p
|
||
|
||
theorem equivalence_reflexive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : reflexive p :=
|
||
equivalence_rec (λ r s t, r) H
|
||
|
||
theorem equivalence_symmetric [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : symmetric p :=
|
||
equivalence_rec (λ r s t, s) H
|
||
|
||
theorem equivalence_transitive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : transitive p :=
|
||
equivalence_rec (λ r s t, t) H
|
||
|
||
end equivalence |