355 lines
11 KiB
Text
355 lines
11 KiB
Text
--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
--- Released under Apache 2.0 license as described in the file LICENSE.
|
||
--- Author: Floris van Doorn
|
||
|
||
-- data.nat.basic
|
||
-- ==============
|
||
--
|
||
-- Basic operations on the natural numbers.
|
||
|
||
import logic data.num tools.tactic algebra.binary tools.helper_tactics
|
||
import logic.inhabited
|
||
|
||
open tactic binary eq.ops
|
||
open decidable
|
||
open relation -- for subst_iff
|
||
open helper_tactics
|
||
|
||
-- Definition of the type
|
||
-- ----------------------
|
||
inductive nat : Type :=
|
||
zero : nat,
|
||
succ : nat → nat
|
||
|
||
namespace nat
|
||
|
||
notation `ℕ` := nat
|
||
|
||
theorem rec_zero {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m)) : nat.rec x f zero = x
|
||
|
||
theorem rec_succ {P : ℕ → Type} (x : P zero) (f : ∀m, P m → P (succ m)) (n : ℕ) :
|
||
nat.rec x f (succ n) = f n (nat.rec x f n)
|
||
|
||
protected definition is_inhabited [instance] : inhabited nat :=
|
||
inhabited.mk zero
|
||
|
||
-- Coercion from num
|
||
-- -----------------
|
||
|
||
definition add (x y : ℕ) : ℕ :=
|
||
nat.rec x (λ n r, succ r) y
|
||
notation a + b := add a b
|
||
|
||
definition of_num [coercion] [reducible] (n : num) : ℕ :=
|
||
num.rec zero
|
||
(λ n, pos_num.rec (succ zero) (λ n r, r + r + (succ zero)) (λ n r, r + r) n) n
|
||
|
||
-- Successor and predecessor
|
||
-- -------------------------
|
||
|
||
theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 :=
|
||
assume H : succ n = 0,
|
||
have H2 : true = false, from
|
||
let f := (nat.rec false (fun a b, true)) in
|
||
calc
|
||
true = f (succ n) : rfl
|
||
... = f 0 : H
|
||
... = false : rfl,
|
||
absurd H2 true_ne_false
|
||
|
||
-- add_rewrite succ_ne_zero
|
||
|
||
definition pred (n : ℕ) := nat.rec 0 (fun m x, m) n
|
||
|
||
theorem pred.zero : pred 0 = 0
|
||
|
||
theorem pred.succ (n : ℕ) : pred (succ n) = n
|
||
|
||
irreducible pred
|
||
|
||
theorem zero_or_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) :=
|
||
induction_on n
|
||
(or.inl rfl)
|
||
(take m IH, or.inr
|
||
(show succ m = succ (pred (succ m)), from congr_arg succ !pred.succ⁻¹))
|
||
|
||
theorem zero_or_exists_succ (n : ℕ) : n = 0 ∨ ∃k, n = succ k :=
|
||
or.imp_or (zero_or_succ_pred n) (assume H, H)
|
||
(assume H : n = succ (pred n), exists_intro (pred n) H)
|
||
|
||
theorem case {P : ℕ → Prop} (n : ℕ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n :=
|
||
induction_on n H1 (take m IH, H2 m)
|
||
|
||
theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B :=
|
||
or.elim (zero_or_succ_pred n)
|
||
(take H3 : n = 0, H1 H3)
|
||
(take H3 : n = succ (pred n), H2 (pred n) H3)
|
||
|
||
theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m :=
|
||
calc
|
||
n = pred (succ n) : pred.succ
|
||
... = pred (succ m) : H
|
||
... = m : pred.succ
|
||
|
||
theorem succ.ne_self {n : ℕ} : succ n ≠ n :=
|
||
induction_on n
|
||
(take H : 1 = 0,
|
||
have ne : 1 ≠ 0, from !succ_ne_zero,
|
||
absurd H ne)
|
||
(take k IH H, IH (succ.inj H))
|
||
|
||
protected definition has_decidable_eq [instance] : decidable_eq ℕ :=
|
||
take n m : ℕ,
|
||
have general : ∀n, decidable (n = m), from
|
||
rec_on m
|
||
(take n,
|
||
rec_on n
|
||
(inl rfl)
|
||
(λ m iH, inr !succ_ne_zero))
|
||
(λ (m' : ℕ) (iH1 : ∀n, decidable (n = m')),
|
||
take n, rec_on n
|
||
(inr (ne.symm !succ_ne_zero))
|
||
(λ (n' : ℕ) (iH2 : decidable (n' = succ m')),
|
||
decidable.by_cases
|
||
(assume Heq : n' = m', inl (congr_arg succ Heq))
|
||
(assume Hne : n' ≠ m',
|
||
have H1 : succ n' ≠ succ m', from
|
||
assume Heq, absurd (succ.inj Heq) Hne,
|
||
inr H1))),
|
||
general n
|
||
|
||
theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1)
|
||
(H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a :=
|
||
have stronger : P a ∧ P (succ a), from
|
||
induction_on a
|
||
(and.intro H1 H2)
|
||
(take k IH,
|
||
have IH1 : P k, from and.elim_left IH,
|
||
have IH2 : P (succ k), from and.elim_right IH,
|
||
and.intro IH2 (H3 k IH1 IH2)),
|
||
and.elim_left stronger
|
||
|
||
theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m)
|
||
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m :=
|
||
have general : ∀m, P n m, from induction_on n
|
||
(take m : ℕ, H1 m)
|
||
(take k : ℕ,
|
||
assume IH : ∀m, P k m,
|
||
take m : ℕ,
|
||
discriminate
|
||
(assume Hm : m = 0, Hm⁻¹ ▸ (H2 k))
|
||
(take l : ℕ, assume Hm : m = succ l, Hm⁻¹ ▸ (H3 k l (IH l)))),
|
||
general m
|
||
|
||
-- Addition
|
||
-- --------
|
||
theorem add.zero_right (n : ℕ) : n + 0 = n
|
||
|
||
theorem add.succ_right (n m : ℕ) : n + succ m = succ (n + m)
|
||
|
||
irreducible add
|
||
|
||
theorem add.zero_left (n : ℕ) : 0 + n = n :=
|
||
induction_on n
|
||
!add.zero_right
|
||
(take m IH, show 0 + succ m = succ m, from
|
||
calc
|
||
0 + succ m = succ (0 + m) : add.succ_right
|
||
... = succ m : IH)
|
||
|
||
theorem add.succ_left (n m : ℕ) : (succ n) + m = succ (n + m) :=
|
||
induction_on m
|
||
(!add.zero_right ▸ !add.zero_right)
|
||
(take k IH, calc
|
||
succ n + succ k = succ (succ n + k) : add.succ_right
|
||
... = succ (succ (n + k)) : IH
|
||
... = succ (n + succ k) : add.succ_right)
|
||
|
||
theorem add.comm (n m : ℕ) : n + m = m + n :=
|
||
induction_on m
|
||
(!add.zero_right ⬝ !add.zero_left⁻¹)
|
||
(take k IH, calc
|
||
n + succ k = succ (n+k) : add.succ_right
|
||
... = succ (k + n) : IH
|
||
... = succ k + n : add.succ_left)
|
||
|
||
theorem add.move_succ (n m : ℕ) : succ n + m = n + succ m :=
|
||
!add.succ_left ⬝ !add.succ_right⁻¹
|
||
|
||
theorem add.comm_succ (n m : ℕ) : n + succ m = m + succ n :=
|
||
!add.move_succ⁻¹ ⬝ !add.comm
|
||
|
||
theorem add.assoc (n m k : ℕ) : (n + m) + k = n + (m + k) :=
|
||
induction_on k
|
||
(!add.zero_right ▸ !add.zero_right)
|
||
(take l IH,
|
||
calc
|
||
(n + m) + succ l = succ ((n + m) + l) : add.succ_right
|
||
... = succ (n + (m + l)) : IH
|
||
... = n + succ (m + l) : add.succ_right
|
||
... = n + (m + succ l) : add.succ_right)
|
||
|
||
theorem add.left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) :=
|
||
left_comm add.comm add.assoc n m k
|
||
|
||
theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m :=
|
||
right_comm add.comm add.assoc n m k
|
||
|
||
-- ### cancelation
|
||
|
||
theorem add.cancel_left {n m k : ℕ} : n + m = n + k → m = k :=
|
||
induction_on n
|
||
(take H : 0 + m = 0 + k,
|
||
!add.zero_left⁻¹ ⬝ H ⬝ !add.zero_left)
|
||
(take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
|
||
have H2 : succ (n + m) = succ (n + k),
|
||
from calc
|
||
succ (n + m) = succ n + m : add.succ_left
|
||
... = succ n + k : H
|
||
... = succ (n + k) : add.succ_left,
|
||
have H3 : n + m = n + k, from succ.inj H2,
|
||
IH H3)
|
||
|
||
theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k :=
|
||
have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm,
|
||
add.cancel_left H2
|
||
|
||
theorem add.eq_zero_left {n m : ℕ} : n + m = 0 → n = 0 :=
|
||
induction_on n
|
||
(take (H : 0 + m = 0), rfl)
|
||
(take k IH,
|
||
assume H : succ k + m = 0,
|
||
absurd
|
||
(show succ (k + m) = 0, from calc
|
||
succ (k + m) = succ k + m : add.succ_left
|
||
... = 0 : H)
|
||
!succ_ne_zero)
|
||
|
||
theorem add.eq_zero_right {n m : ℕ} (H : n + m = 0) : m = 0 :=
|
||
add.eq_zero_left (!add.comm ⬝ H)
|
||
|
||
theorem add.eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 :=
|
||
and.intro (add.eq_zero_left H) (add.eq_zero_right H)
|
||
|
||
-- ### misc
|
||
|
||
theorem add.one (n : ℕ) : n + 1 = succ n :=
|
||
!add.zero_right ▸ !add.succ_right
|
||
|
||
theorem add.one_left (n : ℕ) : 1 + n = succ n :=
|
||
!add.zero_left ▸ !add.succ_left
|
||
|
||
-- TODO: rename? remove?
|
||
theorem induction_plus_one {P : nat → Prop} (a : ℕ) (H1 : P 0)
|
||
(H2 : ∀ (n : ℕ) (IH : P n), P (n + 1)) : P a :=
|
||
nat.rec H1 (take n IH, !add.one ▸ (H2 n IH)) a
|
||
|
||
-- Multiplication
|
||
-- --------------
|
||
|
||
definition mul (n m : ℕ) := nat.rec 0 (fun m x, x + n) m
|
||
notation a * b := mul a b
|
||
|
||
theorem mul.zero_right (n : ℕ) : n * 0 = 0
|
||
|
||
theorem mul.succ_right (n m : ℕ) : n * succ m = n * m + n
|
||
|
||
irreducible mul
|
||
|
||
-- ### commutativity, distributivity, associativity, identity
|
||
|
||
theorem mul.zero_left (n : ℕ) : 0 * n = 0 :=
|
||
induction_on n
|
||
!mul.zero_right
|
||
(take m IH, !mul.succ_right ⬝ !add.zero_right ⬝ IH)
|
||
|
||
theorem mul.succ_left (n m : ℕ) : (succ n) * m = (n * m) + m :=
|
||
induction_on m
|
||
(!mul.zero_right ⬝ !mul.zero_right⁻¹ ⬝ !add.zero_right⁻¹)
|
||
(take k IH, calc
|
||
succ n * succ k = (succ n * k) + succ n : mul.succ_right
|
||
... = (n * k) + k + succ n : IH
|
||
... = (n * k) + (k + succ n) : add.assoc
|
||
... = (n * k) + (n + succ k) : add.comm_succ
|
||
... = (n * k) + n + succ k : add.assoc
|
||
... = (n * succ k) + succ k : mul.succ_right)
|
||
|
||
theorem mul.comm (n m : ℕ) : n * m = m * n :=
|
||
induction_on m
|
||
(!mul.zero_right ⬝ !mul.zero_left⁻¹)
|
||
(take k IH, calc
|
||
n * succ k = n * k + n : mul.succ_right
|
||
... = k * n + n : IH
|
||
... = (succ k) * n : mul.succ_left)
|
||
|
||
theorem mul.distr_right (n m k : ℕ) : (n + m) * k = n * k + m * k :=
|
||
induction_on k
|
||
(calc
|
||
(n + m) * 0 = 0 : mul.zero_right
|
||
... = 0 + 0 : add.zero_right
|
||
... = n * 0 + 0 : mul.zero_right
|
||
... = n * 0 + m * 0 : mul.zero_right)
|
||
(take l IH, calc
|
||
(n + m) * succ l = (n + m) * l + (n + m) : mul.succ_right
|
||
... = n * l + m * l + (n + m) : IH
|
||
... = n * l + m * l + n + m : add.assoc
|
||
... = n * l + n + m * l + m : add.right_comm
|
||
... = n * l + n + (m * l + m) : add.assoc
|
||
... = n * succ l + (m * l + m) : mul.succ_right
|
||
... = n * succ l + m * succ l : mul.succ_right)
|
||
|
||
theorem mul.distr_left (n m k : ℕ) : n * (m + k) = n * m + n * k :=
|
||
calc
|
||
n * (m + k) = (m + k) * n : mul.comm
|
||
... = m * n + k * n : mul.distr_right
|
||
... = n * m + k * n : mul.comm
|
||
... = n * m + n * k : mul.comm
|
||
|
||
theorem mul.assoc (n m k : ℕ) : (n * m) * k = n * (m * k) :=
|
||
induction_on k
|
||
(calc
|
||
(n * m) * 0 = 0 : mul.zero_right
|
||
... = n * 0 : mul.zero_right
|
||
... = n * (m * 0) : mul.zero_right)
|
||
(take l IH,
|
||
calc
|
||
(n * m) * succ l = (n * m) * l + n * m : mul.succ_right
|
||
... = n * (m * l) + n * m : IH
|
||
... = n * (m * l + m) : mul.distr_left
|
||
... = n * (m * succ l) : mul.succ_right)
|
||
|
||
theorem mul.left_comm (n m k : ℕ) : n * (m * k) = m * (n * k) :=
|
||
left_comm mul.comm mul.assoc n m k
|
||
|
||
theorem mul.right_comm (n m k : ℕ) : n * m * k = n * k * m :=
|
||
right_comm mul.comm mul.assoc n m k
|
||
|
||
theorem mul.one_right (n : ℕ) : n * 1 = n :=
|
||
calc
|
||
n * 1 = n * 0 + n : mul.succ_right
|
||
... = 0 + n : mul.zero_right
|
||
... = n : add.zero_left
|
||
|
||
theorem mul.one_left (n : ℕ) : 1 * n = n :=
|
||
calc
|
||
1 * n = n * 1 : mul.comm
|
||
... = n : mul.one_right
|
||
|
||
theorem mul.eq_zero {n m : ℕ} (H : n * m = 0) : n = 0 ∨ m = 0 :=
|
||
discriminate
|
||
(take Hn : n = 0, or.inl Hn)
|
||
(take (k : ℕ),
|
||
assume (Hk : n = succ k),
|
||
discriminate
|
||
(take (Hm : m = 0), or.inr Hm)
|
||
(take (l : ℕ),
|
||
assume (Hl : m = succ l),
|
||
have Heq : succ (k * succ l + l) = n * m, from
|
||
(calc
|
||
n * m = n * succ l : Hl
|
||
... = succ k * succ l : Hk
|
||
... = k * succ l + succ l : mul.succ_left
|
||
... = succ (k * succ l + l) : add.succ_right)⁻¹,
|
||
absurd (Heq ⬝ H) !succ_ne_zero))
|
||
|
||
end nat
|