lean2/library/algebra/order.lean
Leonardo de Moura ae7b5a9bc9 fix(library/algebra): add missing [reducible]
It addresses issues raised at #403
2015-01-21 15:53:56 -08:00

377 lines
13 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.order
Author: Jeremy Avigad
Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also
consider structures with both, where the two are related by
x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair)
x ≤ y ↔ (x < y x = y) (strong_order_pair)
These might not hold constructively in some applications, but we can define additional structures
with both < and ≤ as needed.
-/
import logic.eq logic.connectives
open eq eq.ops
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_le [class] (A : Type) :=
(le : A → A → Prop)
structure has_lt [class] (A : Type) :=
(lt : A → A → Prop)
infixl `<=` := has_le.le
infixl `≤` := has_le.le
infixl `<` := has_lt.lt
definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a
notation a ≥ b := has_le.ge a b
notation a >= b := has_le.ge a b
definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a
notation a > b := has_lt.gt a b
theorem le_of_eq_of_le {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) :
a ≤ c := H1⁻¹ ▸ H2
theorem le_of_le_of_eq {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) :
a ≤ c := H2 ▸ H1
theorem lt_of_eq_of_lt {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) :
a < c := H1⁻¹ ▸ H2
theorem lt_of_lt_of_eq {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) :
a < c := H2 ▸ H1
calc_trans le_of_eq_of_le
calc_trans le_of_le_of_eq
calc_trans lt_of_eq_of_lt
calc_trans lt_of_lt_of_eq
/- weak orders -/
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : ∀a, le a a)
(le_trans : ∀a b c, le a b → le b c → le a c)
(le_antisymm : ∀a b, le a b → le b a → a = b)
section
variable [s : weak_order A]
include s
theorem le.refl (a : A) : a ≤ a := !weak_order.le_refl
theorem le.trans {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
calc_trans le.trans
theorem le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm
end
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : ∀a b, le a b le b a)
theorem le.total [s : linear_weak_order A] (a b : A) : a ≤ b b ≤ a :=
!linear_weak_order.le_total
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : ∀a, ¬ lt a a)
(lt_trans : ∀a b c, lt a b → lt b c → lt a c)
section
variable [s : strict_order A]
include s
theorem lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl
theorem lt.trans {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
calc_trans lt.trans
theorem ne_of_lt {a b : A} : a < b → a ≠ b :=
assume lt_ab : a < b, assume eq_ab : a = b,
show false, from lt.irrefl b (eq_ab ▸ lt_ab)
theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a :=
assume H1 : b < a, lt.irrefl _ (lt.trans H H1)
end
/- well-founded orders -/
-- TODO: do these duplicate what Leo has done? if so, eliminate
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf.rec_on x H
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b))
section
variable [s : order_pair A]
variables {a b c : A}
include s
theorem lt_iff_le_and_ne : a < b ↔ (a ≤ b ∧ a ≠ b) :=
!order_pair.lt_iff_le_ne
theorem le_of_lt (H : a < b) : a ≤ b :=
and.elim_left (iff.mp lt_iff_le_and_ne H)
theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2)
private theorem lt_irrefl (s : order_pair A) (a : A) : ¬ a < a :=
assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H),
H1 rfl
private theorem lt_trans (s : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c :=
have le_ab : a ≤ b, from le_of_lt lt_ab,
have le_bc : b ≤ c, from le_of_lt lt_bc,
have le_ac : a ≤ c, from le.trans le_ab le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab),
ne_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac
definition order_pair.to_strict_order [instance] [coercion] [reducible] [s : order_pair A] : strict_order A :=
⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄
theorem lt_of_lt_of_le : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm (le_of_lt lt_ab) le_ba,
show false, from ne_of_lt lt_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac
theorem lt_of_le_of_lt : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisymm (le_of_lt lt_bc) le_cb,
show false, from ne_of_lt lt_bc eq_bc,
show a < c, from lt_of_le_of_ne le_ac ne_ac
calc_trans lt_of_lt_of_le
calc_trans lt_of_le_of_lt
theorem not_le_of_lt (H : a < b) : ¬ b ≤ a :=
assume H1 : b ≤ a,
lt.irrefl _ (lt_of_lt_of_le H H1)
theorem not_lt_of_le (H : a ≤ b) : ¬ b < a :=
assume H1 : b < a,
lt.irrefl _ (lt_of_le_of_lt H H1)
end
structure strong_order_pair [class] (A : Type) extends order_pair A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b a = b :=
!strong_order_pair.le_iff_lt_or_eq
theorem lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b a = b :=
iff.mp le_iff_lt_or_eq le_ab
-- We can also construct a strong order pair by defining a strict order, and then defining
-- x ≤ y ↔ x < y x = y
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
private theorem le_refl (s : strict_order_with_le A) (a : A) : a ≤ a :=
iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl)
private theorem le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c :=
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
(assume lt_bc : b < c,
iff.elim_right
!strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc)
private theorem le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b :=
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab)
private theorem lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b ∧ a ≠ b :=
iff.intro
(assume lt_ab : a < b,
have le_ab : a ≤ b, from
iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (ne_of_lt lt_ab))
(assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b, from
iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H),
show a < b, from or_resolve_left H1 (and.elim_right H))
definition strict_order_with_le.to_order_pair [instance] [coercion] [reducible] [s : strict_order_with_le A] :
strong_order_pair A :=
⦃ strong_order_pair, s,
le_refl := le_refl s,
le_trans := le_trans s,
le_antisymm := le_antisymm s,
lt_iff_le_ne := lt_iff_le_ne s ⦄
/- linear orders -/
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A,
linear_weak_order A
section
variable [s : linear_strong_order_pair A]
variables (a b c : A)
include s
theorem lt.trichotomy : a < b a = b b < a :=
or.elim (le.total a b)
(assume H : a ≤ b,
or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inl H1) (assume H1, or.inr (or.inl H1)))
(assume H : b ≤ a,
or.elim (iff.mp !le_iff_lt_or_eq H)
(assume H1, or.inr (or.inr H1))
(assume H1, or.inr (or.inl (H1⁻¹))))
theorem lt.by_cases {a b : A} {P : Prop}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
or.elim !lt.trichotomy
(assume H, H1 H)
(assume H, or.elim H (assume H', H2 H') (assume H', H3 H'))
definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion] [reducible]
[s : linear_strong_order_pair A] : linear_order_pair A :=
⦃ linear_order_pair, s ⦄
theorem le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a :=
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
theorem lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a :=
lt.by_cases
(assume H', absurd (le_of_lt H') H)
(assume H', absurd (H' ▸ !le.refl) H)
(assume H', H')
theorem lt_or_ge : a < b a ≥ b :=
lt.by_cases
(assume H1 : a < b, or.inl H1)
(assume H1 : a = b, or.inr (H1 ▸ le.refl a))
(assume H1 : a > b, or.inr (le_of_lt H1))
theorem le_or_gt : a ≤ b a > b :=
!or.swap (lt_or_ge b a)
theorem lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b a > b :=
lt.by_cases (assume H1, or.inl H1) (assume H1, absurd H1 H) (assume H1, or.inr H1)
end
structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A :=
(decidable_lt : decidable_rel lt)
section
variable [s : decidable_linear_order A]
variables {a b c d : A}
include s
open decidable
definition decidable_lt [instance] : decidable (a < b) :=
@decidable_linear_order.decidable_lt _ _ _ _
definition decidable_le [instance] : decidable (a ≤ b) :=
by_cases
(assume H : a < b, inl (le_of_lt H))
(assume H : ¬ a < b,
have H1 : b ≤ a, from le_of_not_lt H,
by_cases
(assume H2 : b < a, inr (not_le_of_lt H2))
(assume H2 : ¬ b < a, inl (le_of_not_lt H2)))
definition decidable_eq [instance] : decidable (a = b) :=
by_cases
(assume H : a ≤ b,
by_cases
(assume H1 : b ≤ a, inl (le.antisymm H H1))
(assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a))))
(assume H : ¬ a ≤ b,
(inr (assume H1 : a = b, H (H1 ▸ !le.refl))))
-- testing equality first may result in more definitional equalities
definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B :=
if a = b then t_eq else (if a < b then t_lt else t_gt)
theorem lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) :
lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H
theorem lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) :
lt.cases a b t_lt t_eq t_gt = t_lt :=
if_neg (ne_of_lt H) ⬝ if_pos H
theorem lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) :
lt.cases a b t_lt t_eq t_gt = t_gt :=
if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H)
/-
definition lt.by_cases' {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
if H4 : a < b then H1 H4 else
(if H5 : a = b then H2 H5 else
H3 (lt_of_le_of_ne (le_of_not_lt H4) (ne.symm H5)))
definition lt.by_cases'_of_lt {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) (H4 : a < b) :
lt.by_cases' H1 H2 H3 = H1 H4 := !dif_pos
theorem lt.by_cases'_of_eq {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) (H4 : a = b) :
lt.by_cases' H1 H2 H3 = H2 H4 :=
have H5 [visible] : ¬ a < b, from assume H6 : a < b, ne_of_lt H6 H4,
dif_pos H4 ▸ dif_neg H5
theorem lt.by_cases'_of_gt {a b : A} {P : Type}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) (H4 : a > b) :
lt.by_cases' H1 H2 H3 = H3 H4 :=
have H5 [visible] : ¬ a < b, from lt.asymm H4,
have H6 [visible] : a ≠ b, from (assume H7: a = b, lt.irrefl b (H7 ▸ H4)),
dif_neg H6 ▸ dif_neg H5
-/
end
end algebra