44a31dd8fb
- The extension does not have to be provided. - It can also import Lua files. - Hierachical names can be used instead of strings. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2909 lines
112 KiB
C++
2909 lines
112 KiB
C++
/*
|
|
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Leonardo de Moura
|
|
*/
|
|
#ifdef LEAN_USE_READLINE
|
|
#include <stdio.h>
|
|
#include <readline/readline.h>
|
|
#include <readline/history.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <algorithm>
|
|
#endif
|
|
#include <utility>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
#include <limits>
|
|
#include "util/flet.h"
|
|
#include "util/luaref.h"
|
|
#include "util/scoped_map.h"
|
|
#include "util/exception.h"
|
|
#include "util/sstream.h"
|
|
#include "util/script_state.h"
|
|
#include "util/script_exception.h"
|
|
#include "util/interrupt.h"
|
|
#include "util/lean_path.h"
|
|
#include "util/sexpr/option_declarations.h"
|
|
#include "kernel/normalizer.h"
|
|
#include "kernel/type_checker.h"
|
|
#include "kernel/free_vars.h"
|
|
#include "kernel/builtin.h"
|
|
#include "kernel/kernel_exception.h"
|
|
#include "kernel/expr_maps.h"
|
|
#include "kernel/printer.h"
|
|
#include "kernel/metavar.h"
|
|
#include "kernel/for_each_fn.h"
|
|
#include "kernel/find_fn.h"
|
|
#include "kernel/type_checker_justification.h"
|
|
#include "library/expr_lt.h"
|
|
#include "library/arith/arith.h"
|
|
#include "library/io_state.h"
|
|
#include "library/placeholder.h"
|
|
#include "library/kernel_bindings.h"
|
|
#include "library/elaborator/elaborator_exception.h"
|
|
#include "library/tactic/proof_state.h"
|
|
#include "library/tactic/tactic.h"
|
|
#include "library/tactic/apply_tactic.h"
|
|
#include "library/elaborator/elaborator.h"
|
|
#include "frontends/lean/frontend.h"
|
|
#include "frontends/lean/frontend_elaborator.h"
|
|
#include "frontends/lean/parser.h"
|
|
#include "frontends/lean/scanner.h"
|
|
#include "frontends/lean/notation.h"
|
|
#include "frontends/lean/pp.h"
|
|
#include "frontends/lean/environment_scope.h"
|
|
|
|
#ifndef LEAN_DEFAULT_PARSER_SHOW_ERRORS
|
|
#define LEAN_DEFAULT_PARSER_SHOW_ERRORS true
|
|
#endif
|
|
|
|
#ifndef LEAN_DEFAULT_PARSER_VERBOSE
|
|
#define LEAN_DEFAULT_PARSER_VERBOSE true
|
|
#endif
|
|
|
|
namespace lean {
|
|
// ==========================================
|
|
// Parser configuration options
|
|
static name g_parser_verbose {"lean", "parser", "verbose"};
|
|
static name g_parser_show_errors {"lean", "parser", "show_errors"};
|
|
|
|
RegisterBoolOption(g_parser_verbose, LEAN_DEFAULT_PARSER_VERBOSE, "(lean parser) disable/enable parser verbose messages");
|
|
RegisterBoolOption(g_parser_show_errors, LEAN_DEFAULT_PARSER_SHOW_ERRORS, "(lean parser) display error messages in the regular output channel");
|
|
|
|
bool get_parser_verbose(options const & opts) { return opts.get_bool(g_parser_verbose, LEAN_DEFAULT_PARSER_VERBOSE); }
|
|
bool get_parser_show_errors(options const & opts) { return opts.get_bool(g_parser_show_errors, LEAN_DEFAULT_PARSER_SHOW_ERRORS); }
|
|
// ==========================================
|
|
|
|
// ==========================================
|
|
// Builtin commands
|
|
static name g_definition_kwd("Definition");
|
|
static name g_variable_kwd("Variable");
|
|
static name g_variables_kwd("Variables");
|
|
static name g_theorem_kwd("Theorem");
|
|
static name g_axiom_kwd("Axiom");
|
|
static name g_universe_kwd("Universe");
|
|
static name g_eval_kwd("Eval");
|
|
static name g_show_kwd("Show");
|
|
static name g_check_kwd("Check");
|
|
static name g_infix_kwd("Infix");
|
|
static name g_infixl_kwd("Infixl");
|
|
static name g_infixr_kwd("Infixr");
|
|
static name g_notation_kwd("Notation");
|
|
static name g_echo_kwd("Echo");
|
|
static name g_set_kwd("SetOption");
|
|
static name g_options_kwd("Options");
|
|
static name g_env_kwd("Environment");
|
|
static name g_import_kwd("Import");
|
|
static name g_help_kwd("Help");
|
|
static name g_coercion_kwd("Coercion");
|
|
static name g_exit_kwd("Exit");
|
|
static name g_push_kwd("Push");
|
|
static name g_pop_kwd("Pop");
|
|
static name g_scope_kwd("Scope");
|
|
static name g_end_scope_kwd("EndScope");
|
|
static name g_apply("apply");
|
|
static name g_done("done");
|
|
static name g_back("back");
|
|
static name g_abort("abort");
|
|
static name g_assumption("assumption");
|
|
static list<name> g_tactic_cmds = { g_apply, g_done, g_back, g_abort, g_assumption };
|
|
/** \brief Table/List with all builtin command keywords */
|
|
static list<name> g_command_keywords = {g_definition_kwd, g_variable_kwd, g_variables_kwd, g_theorem_kwd, g_axiom_kwd, g_universe_kwd, g_eval_kwd,
|
|
g_show_kwd, g_check_kwd, g_infix_kwd, g_infixl_kwd, g_infixr_kwd, g_notation_kwd, g_echo_kwd,
|
|
g_set_kwd, g_env_kwd, g_options_kwd, g_import_kwd, g_help_kwd, g_coercion_kwd, g_exit_kwd, g_push_kwd,
|
|
g_pop_kwd, g_scope_kwd, g_end_scope_kwd};
|
|
// ==========================================
|
|
|
|
// ==========================================
|
|
// Support for parsing levels
|
|
static name g_max_name("max");
|
|
static name g_cup_name("\u2294");
|
|
static name g_plus_name("+");
|
|
static unsigned g_level_plus_prec = 10;
|
|
static unsigned g_level_cup_prec = 5;
|
|
// ==========================================
|
|
|
|
// A name that can't be created by the user.
|
|
// It is used as placeholder for parsing A -> B expressions which
|
|
// are syntax sugar for (Pi (_ : A), B)
|
|
static name g_unused = name::mk_internal_unique_name();
|
|
|
|
enum class macro_arg_kind { Expr, Exprs, Bindings, Id, Int, String, Comma, Assign, Tactic, Tactics };
|
|
struct macro {
|
|
list<macro_arg_kind> m_arg_kinds;
|
|
luaref m_fn;
|
|
unsigned m_precedence;
|
|
macro(list<macro_arg_kind> const & as, luaref const & fn, unsigned prec):m_arg_kinds(as), m_fn(fn), m_precedence(prec) {}
|
|
};
|
|
typedef name_map<macro> macros;
|
|
macros & get_expr_macros(lua_State * L);
|
|
macros & get_tactic_macros(lua_State * L);
|
|
macros & get_cmd_macros(lua_State * L);
|
|
|
|
static char g_set_parser_key;
|
|
|
|
/** \brief Return a reference to the parser object */
|
|
parser::imp * get_parser(lua_State * L) {
|
|
lua_pushlightuserdata(L, static_cast<void *>(&g_set_parser_key));
|
|
lua_gettable(L, LUA_REGISTRYINDEX);
|
|
if (lua_islightuserdata(L, -1)) {
|
|
auto r = static_cast<parser::imp*>(lua_touserdata(L, -1));
|
|
lua_pop(L, 1);
|
|
return r;
|
|
}
|
|
lua_pop(L, 1);
|
|
return nullptr;
|
|
}
|
|
|
|
/** \brief Auxiliary object that stores a reference to the parser object inside the Lua State */
|
|
struct set_parser {
|
|
script_state * m_state;
|
|
parser::imp * m_prev;
|
|
set_parser(script_state * S, parser::imp * ptr) {
|
|
m_state = S;
|
|
if (m_state) {
|
|
m_state->apply([&](lua_State * L) {
|
|
m_prev = get_parser(L);
|
|
lua_pushlightuserdata(L, static_cast<void *>(&g_set_parser_key));
|
|
lua_pushlightuserdata(L, ptr);
|
|
lua_settable(L, LUA_REGISTRYINDEX);
|
|
});
|
|
}
|
|
}
|
|
~set_parser() {
|
|
if (m_state) {
|
|
m_state->apply([&](lua_State * L) {
|
|
lua_pushlightuserdata(L, static_cast<void *>(&g_set_parser_key));
|
|
lua_pushlightuserdata(L, m_prev);
|
|
lua_settable(L, LUA_REGISTRYINDEX);
|
|
});
|
|
}
|
|
}
|
|
};
|
|
|
|
/**
|
|
\brief Actual implementation for the parser functional object
|
|
|
|
\remark It is an instance of a Pratt parser
|
|
(http://en.wikipedia.org/wiki/Pratt_parser) described in the paper
|
|
"Top down operator precedence". This algorithm is super simple,
|
|
and it is easy to support user-defined infix/prefix/postfix/mixfix
|
|
operators.
|
|
*/
|
|
class parser::imp {
|
|
friend class parser;
|
|
friend int mk_cmd_macro(lua_State * L);
|
|
typedef scoped_map<name, unsigned, name_hash, name_eq> local_decls;
|
|
typedef name_map<expr> builtins;
|
|
typedef std::pair<unsigned, unsigned> pos_info;
|
|
typedef expr_map<pos_info> expr_pos_info;
|
|
typedef expr_map<tactic> tactic_hints; // a mapping from placeholder to tactic
|
|
typedef buffer<std::tuple<pos_info, name, expr, bool>> bindings_buffer;
|
|
environment m_env;
|
|
io_state m_io_state;
|
|
scanner m_scanner;
|
|
frontend_elaborator m_elaborator;
|
|
macros const * m_expr_macros;
|
|
macros const * m_cmd_macros;
|
|
macros const * m_tactic_macros;
|
|
scanner::token m_curr;
|
|
bool m_use_exceptions;
|
|
bool m_interactive;
|
|
bool m_found_errors;
|
|
local_decls m_local_decls;
|
|
unsigned m_num_local_decls;
|
|
expr_pos_info m_expr_pos_info;
|
|
pos_info m_last_cmd_pos;
|
|
pos_info m_last_script_pos;
|
|
tactic_hints m_tactic_hints;
|
|
// If true then return error when parsing identifiers and it is not local or global.
|
|
// We set this flag off when parsing tactics. The apply_tac may reference
|
|
// a hypothesis in the proof state. This hypothesis is not visible until we
|
|
// execute the tactic.
|
|
bool m_check_identifiers;
|
|
|
|
script_state * m_script_state;
|
|
set_parser m_set_parser;
|
|
|
|
bool m_verbose;
|
|
bool m_show_errors;
|
|
|
|
/** \brief Exception used to track parsing erros, it does not leak outside of this class. */
|
|
struct parser_error : public exception {
|
|
pos_info m_pos;
|
|
parser_error(char const * msg, pos_info const & p):exception(msg), m_pos(p) {}
|
|
parser_error(sstream const & msg, pos_info const & p):exception(msg), m_pos(p) {}
|
|
virtual exception * clone() const { return new parser_error(m_msg.c_str(), m_pos); }
|
|
virtual void rethrow() const { throw *this; }
|
|
};
|
|
|
|
struct tactic_cmd_error : public parser_error {
|
|
proof_state m_state;
|
|
tactic_cmd_error(char const * msg, pos_info const & p, proof_state const & s):parser_error(msg, p), m_state(s) {}
|
|
tactic_cmd_error(sstream const & msg, pos_info const & p, proof_state const & s):parser_error(msg, p), m_state(s) {}
|
|
virtual exception * clone() const { return new tactic_cmd_error(m_msg.c_str(), m_pos, m_state); }
|
|
virtual void rethrow() const { throw *this; }
|
|
};
|
|
|
|
struct metavar_not_synthesized_exception : public exception {
|
|
context m_mvar_ctx;
|
|
expr m_mvar;
|
|
expr m_mvar_type;
|
|
public:
|
|
metavar_not_synthesized_exception(context const & ctx, expr const & mvar, expr const & mvar_type, char const * msg):
|
|
exception(msg), m_mvar_ctx(ctx), m_mvar(mvar), m_mvar_type(mvar_type) {}
|
|
};
|
|
|
|
template<typename F>
|
|
typename std::result_of<F(lua_State * L)>::type using_script(F && f) {
|
|
return m_script_state->apply([&](lua_State * L) {
|
|
set_io_state set1(L, m_io_state);
|
|
set_environment set2(L, m_env);
|
|
return f(L);
|
|
});
|
|
}
|
|
|
|
template<typename F>
|
|
void code_with_callbacks(F && f) {
|
|
m_script_state->apply([&](lua_State * L) {
|
|
set_io_state set1(L, m_io_state);
|
|
set_environment set2(L, m_env);
|
|
m_script_state->exec_unprotected([&]() {
|
|
f();
|
|
});
|
|
});
|
|
}
|
|
|
|
/**
|
|
\brief Auxiliar struct for creating/destroying a new scope for
|
|
local declarations.
|
|
*/
|
|
struct mk_scope {
|
|
imp & m_fn;
|
|
local_decls::mk_scope m_scope;
|
|
unsigned m_old_num_local_decls;
|
|
mk_scope(imp & fn):
|
|
m_fn(fn),
|
|
m_scope(fn.m_local_decls),
|
|
m_old_num_local_decls(fn.m_num_local_decls) {
|
|
}
|
|
~mk_scope() {
|
|
m_fn.m_num_local_decls = m_old_num_local_decls;
|
|
}
|
|
};
|
|
|
|
/** \brief Return the current position information */
|
|
pos_info pos() const { return mk_pair(m_scanner.get_line(), m_scanner.get_pos()); }
|
|
|
|
/** \brief Return the position associated with \c e. If there is none, then return \c default_pos. */
|
|
pos_info pos_of(expr const & e, pos_info default_pos) {
|
|
auto it = m_expr_pos_info.find(e);
|
|
if (it == m_expr_pos_info.end())
|
|
return default_pos;
|
|
else
|
|
return it->second;
|
|
}
|
|
|
|
/** \brief Associate position \c p with \c e and return \c e */
|
|
expr save(expr const & e, pos_info p) { m_expr_pos_info[e] = p; return e; }
|
|
|
|
/** \brief Read the next token. */
|
|
void scan() { m_curr = m_scanner.scan(); }
|
|
/** \brief Return the current token */
|
|
scanner::token curr() const { return m_curr; }
|
|
/** \brief Read the next token if the current one is not End-of-file. */
|
|
void next() { if (m_curr != scanner::token::Eof) scan(); }
|
|
|
|
/** \brief Return the name associated with the current token. */
|
|
name const & curr_name() const { return m_scanner.get_name_val(); }
|
|
/** \brief Return the numeral associated with the current token. */
|
|
mpq const & curr_num() const { return m_scanner.get_num_val(); }
|
|
/** \brief Return the string associated with the current token. */
|
|
std::string const & curr_string() const { return m_scanner.get_str_val(); }
|
|
|
|
/**
|
|
\brief Check if the current token is \c t, and move to the
|
|
next one. If the current token is not \c t, it throws a parser error.
|
|
*/
|
|
void check_next(scanner::token t, char const * msg) {
|
|
if (curr() == t)
|
|
next();
|
|
else
|
|
throw parser_error(msg, pos());
|
|
}
|
|
|
|
/** \brief Return true iff the current token is an identifier */
|
|
bool curr_is_identifier() const { return curr() == scanner::token::Id; }
|
|
/** \brief Return true iff the current token is a '_" */
|
|
bool curr_is_placeholder() const { return curr() == scanner::token::Placeholder; }
|
|
/** \brief Return true iff the current token is a natural number */
|
|
bool curr_is_nat() const { return curr() == scanner::token::NatVal; }
|
|
/** \brief Return true iff the current token is a '(' */
|
|
bool curr_is_lparen() const { return curr() == scanner::token::LeftParen; }
|
|
/** \brief Return true iff the current token is a '{' */
|
|
bool curr_is_lcurly() const { return curr() == scanner::token::LeftCurlyBracket; }
|
|
/** \brief Return true iff the current token is a ':' */
|
|
bool curr_is_colon() const { return curr() == scanner::token::Colon; }
|
|
/** \brief Return true iff the current token is a ',' */
|
|
bool curr_is_comma() const { return curr() == scanner::token::Comma; }
|
|
/** \brief Return true iff the current token is a ':=' */
|
|
bool curr_is_assign() const { return curr() == scanner::token::Assign; }
|
|
/** \brief Return true iff the current token is an 'in' token */
|
|
bool curr_is_in() const { return curr() == scanner::token::In; }
|
|
/** \brief Return true iff the current token is '.' */
|
|
bool curr_is_period() const { return curr() == scanner::token::Period; }
|
|
/** \brief Return true iff the current token is a tactic command */
|
|
bool curr_is_tactic_cmd() const {
|
|
return curr_is_identifier() && std::find(g_tactic_cmds.begin(), g_tactic_cmds.end(), curr_name()) != g_tactic_cmds.end();
|
|
}
|
|
|
|
/** \brief Throws a parser error if the current token is not an identifier. */
|
|
void check_identifier(char const * msg) { if (!curr_is_identifier()) throw parser_error(msg, pos()); }
|
|
/**
|
|
\brief Throws a parser error if the current token is not an
|
|
identifier. If it is, move to the next token.
|
|
*/
|
|
name check_identifier_next(char const * msg) { check_identifier(msg); name r = curr_name(); next(); return r; }
|
|
/** \brief Throws a parser error if the current token is not '_'. If it is, move to the next token. */
|
|
void check_placeholder_next(char const * msg) { check_next(scanner::token::Placeholder, msg); }
|
|
/** \brief Throws a parser error if the current token is not ':'. If it is, move to the next token. */
|
|
void check_colon_next(char const * msg) { check_next(scanner::token::Colon, msg); }
|
|
/** \brief Throws a parser error if the current token is not ','. If it is, move to the next token. */
|
|
void check_comma_next(char const * msg) { check_next(scanner::token::Comma, msg); }
|
|
/** \brief Throws a parser error if the current token is not ')'. If it is, move to the next token. */
|
|
void check_rparen_next(char const * msg) { check_next(scanner::token::RightParen, msg); }
|
|
/** \brief Throws a parser error if the current token is not '}'. If it is, move to the next token. */
|
|
void check_rcurly_next(char const * msg) { check_next(scanner::token::RightCurlyBracket, msg); }
|
|
/** \brief Throws a parser error if the current token is not ':='. If it is, move to the next token. */
|
|
void check_assign_next(char const * msg) { check_next(scanner::token::Assign, msg); }
|
|
/** \brief Throws a parser error if the current token is not '.'. If it is, move to the next token. */
|
|
void check_period_next(char const * msg) { check_next(scanner::token::Period, msg); }
|
|
|
|
/**
|
|
\brief Throws a parser error if the current token is not a
|
|
string. If it is, move to the next token.
|
|
*/
|
|
std::string check_string_next(char const * msg) {
|
|
if (curr() != scanner::token::StringVal)
|
|
throw parser_error(msg, pos());
|
|
std::string r = curr_string();
|
|
next();
|
|
return r;
|
|
}
|
|
|
|
/**
|
|
@name Error handling
|
|
*/
|
|
|
|
/*@{*/
|
|
void display_error_pos(unsigned line, unsigned pos) {
|
|
regular(m_io_state) << "Error (line: " << line;
|
|
if (pos != static_cast<unsigned>(-1))
|
|
regular(m_io_state) << ", pos: " << pos;
|
|
regular(m_io_state) << ")";
|
|
}
|
|
|
|
void display_error_pos(pos_info const & p) { display_error_pos(p.first, p.second); }
|
|
|
|
void display_error_pos(optional<expr> const & e) {
|
|
if (e) {
|
|
auto it = m_expr_pos_info.find(*e);
|
|
if (it == m_expr_pos_info.end())
|
|
return display_error_pos(m_last_cmd_pos);
|
|
else
|
|
return display_error_pos(it->second);
|
|
} else {
|
|
return display_error_pos(m_last_cmd_pos);
|
|
}
|
|
}
|
|
|
|
void display_error(char const * msg, unsigned line, unsigned pos) {
|
|
display_error_pos(line, pos);
|
|
regular(m_io_state) << " " << msg << endl;
|
|
}
|
|
|
|
void display_error(char const * msg) {
|
|
display_error(msg, m_scanner.get_line(), m_scanner.get_pos());
|
|
}
|
|
|
|
void display_error(kernel_exception const & ex) {
|
|
optional<expr> main_expr = ex.get_main_expr();
|
|
if (main_expr)
|
|
display_error_pos(some_expr(m_elaborator.get_original(*main_expr)));
|
|
else
|
|
display_error_pos(main_expr);
|
|
regular(m_io_state) << " " << ex << endl;
|
|
}
|
|
|
|
void display_error(metavar_not_synthesized_exception const & ex) {
|
|
display_error_pos(some_expr(m_elaborator.get_original(ex.m_mvar)));
|
|
regular(m_io_state) << " " << ex.what() << ", metavariable: " << ex.m_mvar << ", type:\n";
|
|
formatter fmt = m_io_state.get_formatter();
|
|
options opts = m_io_state.get_options();
|
|
regular(m_io_state) << mk_pair(fmt(ex.m_mvar_ctx, ex.m_mvar_type, true, opts), opts) << "\n";
|
|
}
|
|
|
|
struct lean_pos_info_provider : public pos_info_provider {
|
|
imp const & m_ref;
|
|
lean_pos_info_provider(imp const & r):m_ref(r) {}
|
|
virtual std::pair<unsigned, unsigned> get_pos_info(expr const & e) const {
|
|
expr const & o = m_ref.m_elaborator.get_original(e);
|
|
auto it = m_ref.m_expr_pos_info.find(o);
|
|
if (it == m_ref.m_expr_pos_info.end())
|
|
throw exception("position is not available"); // information is not available
|
|
return it->second;
|
|
}
|
|
};
|
|
|
|
void display_error(elaborator_exception const & ex) {
|
|
formatter fmt = m_io_state.get_formatter();
|
|
options opts = m_io_state.get_options();
|
|
lean_pos_info_provider pos_provider(*this);
|
|
regular(m_io_state) << mk_pair(ex.get_justification().pp(fmt, opts, &pos_provider, true), opts) << endl;
|
|
}
|
|
|
|
void display_error(script_exception const & ex) {
|
|
switch (ex.get_source()) {
|
|
case script_exception::source::String:
|
|
display_error_pos(ex.get_line() + m_last_script_pos.first - 1, static_cast<unsigned>(-1));
|
|
regular(m_io_state) << " executing script," << ex.get_msg() << endl;
|
|
break;
|
|
case script_exception::source::File:
|
|
display_error_pos(m_last_script_pos);
|
|
regular(m_io_state) << " executing external script (" << ex.get_filename() << ":" << ex.get_line() << ")," << ex.get_msg() << endl;
|
|
break;
|
|
case script_exception::source::Unknown:
|
|
display_error_pos(m_last_script_pos);
|
|
regular(m_io_state) << " executing script, exact error position is not available, " << ex.what() << endl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void display_error(tactic_cmd_error const & ex) {
|
|
display_error(ex.what(), ex.m_pos.first, ex.m_pos.second);
|
|
display_proof_state(ex.m_state);
|
|
}
|
|
|
|
/**
|
|
\brief Execute the given function \c f, and handle exceptions occurring
|
|
when executing \c f.
|
|
The parameter \c s is an error synchronization procedure.
|
|
*/
|
|
template<typename F, typename Sync>
|
|
void protected_call(F && f, Sync && sync) {
|
|
try {
|
|
f();
|
|
} catch (tactic_cmd_error & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex);
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (parser_error & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex.what(), ex.m_pos.first, ex.m_pos.second);
|
|
sync();
|
|
if (m_use_exceptions) {
|
|
throw parser_exception(ex.what(), ex.m_pos.first, ex.m_pos.second);
|
|
}
|
|
} catch (kernel_exception & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex);
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (elaborator_exception & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex);
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (metavar_not_synthesized_exception & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex);
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (script_exception & ex) {
|
|
m_found_errors = true;
|
|
reset_interrupt();
|
|
if (m_show_errors)
|
|
display_error(ex);
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (interrupted & ex) {
|
|
if (m_verbose)
|
|
regular(m_io_state) << "!!!Interrupted!!!" << endl;
|
|
reset_interrupt();
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
} catch (exception & ex) {
|
|
m_found_errors = true;
|
|
if (m_show_errors)
|
|
display_error(ex.what());
|
|
sync();
|
|
if (m_use_exceptions)
|
|
throw;
|
|
}
|
|
}
|
|
/*@}*/
|
|
|
|
unsigned parse_unsigned(char const * msg) {
|
|
lean_assert(curr_is_nat());
|
|
mpz pval = curr_num().get_numerator();
|
|
if (!pval.is_unsigned_int()) {
|
|
throw parser_error(msg, pos());
|
|
} else {
|
|
unsigned r = pval.get_unsigned_int();
|
|
next();
|
|
return r;
|
|
}
|
|
}
|
|
|
|
double parse_double() {
|
|
return 0.0;
|
|
}
|
|
|
|
[[ noreturn ]] void not_implemented_yet() {
|
|
// TODO(Leo)
|
|
throw parser_error("not implemented yet", pos());
|
|
}
|
|
|
|
/**
|
|
@name Parse Universe levels
|
|
*/
|
|
/*@{*/
|
|
level parse_level_max() {
|
|
auto p = pos();
|
|
next();
|
|
buffer<level> lvls;
|
|
while (curr_is_identifier() || curr_is_nat()) {
|
|
lvls.push_back(parse_level());
|
|
}
|
|
if (lvls.size() < 2)
|
|
throw parser_error("invalid level expression, max must have at least two arguments", p);
|
|
level r = lvls[0];
|
|
for (unsigned i = 1; i < lvls.size(); i++)
|
|
r = max(r, lvls[i]);
|
|
return r;
|
|
}
|
|
|
|
level parse_level_nud_id() {
|
|
name id = curr_name();
|
|
if (id == g_max_name) {
|
|
return parse_level_max();
|
|
} else {
|
|
next();
|
|
return m_env->get_uvar(id);
|
|
}
|
|
}
|
|
|
|
level parse_level_nud_int() {
|
|
auto p = pos();
|
|
mpz val = curr_num().get_numerator();
|
|
next();
|
|
if (!val.is_unsigned_int())
|
|
throw parser_error("invalid level expression, value does not fit in a machine integer", p);
|
|
return level() + val.get_unsigned_int();
|
|
}
|
|
|
|
level parse_level_lparen() {
|
|
next();
|
|
level r = parse_level();
|
|
check_rparen_next("invalid level expression, ')' expected");
|
|
return r;
|
|
}
|
|
|
|
level parse_level_nud() {
|
|
switch (curr()) {
|
|
case scanner::token::Id: return parse_level_nud_id();
|
|
case scanner::token::NatVal: return parse_level_nud_int();
|
|
case scanner::token::LeftParen: return parse_level_lparen();
|
|
default:
|
|
throw parser_error("invalid level expression", pos());
|
|
}
|
|
}
|
|
|
|
level parse_level_led_plus(level const & left) {
|
|
auto p = pos();
|
|
next();
|
|
level right = parse_level(g_level_plus_prec);
|
|
if (!is_lift(right) || !lift_of(right).is_bottom())
|
|
throw parser_error("invalid level expression, right hand side of '+' (aka universe lift operator) must be a numeral", p);
|
|
return left + lift_offset(right);
|
|
}
|
|
|
|
level parse_level_led_cup(level const & left) {
|
|
next();
|
|
level right = parse_level(g_level_cup_prec);
|
|
return max(left, right);
|
|
}
|
|
|
|
level parse_level_led(level const & left) {
|
|
switch (curr()) {
|
|
case scanner::token::Id:
|
|
if (curr_name() == g_plus_name) return parse_level_led_plus(left);
|
|
else if (curr_name() == g_cup_name) return parse_level_led_cup(left);
|
|
default:
|
|
throw parser_error("invalid level expression", pos());
|
|
}
|
|
}
|
|
|
|
unsigned curr_level_lbp() {
|
|
switch (curr()) {
|
|
case scanner::token::Id: {
|
|
name const & id = curr_name();
|
|
if (id == g_plus_name) return g_level_plus_prec;
|
|
else if (id == g_cup_name) return g_level_cup_prec;
|
|
else return 0;
|
|
}
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
/** \brief Parse a universe level */
|
|
level parse_level(unsigned rbp = 0) {
|
|
level left = parse_level_nud();
|
|
while (rbp < curr_level_lbp()) {
|
|
left = parse_level_led(left);
|
|
}
|
|
return left;
|
|
}
|
|
/*@}*/
|
|
|
|
/**
|
|
@name Parse Expressions
|
|
*/
|
|
/*@{*/
|
|
|
|
/**
|
|
\brief Return the size of the implicit vector associated with the given denotation.
|
|
*/
|
|
unsigned get_implicit_vector_size(expr const & d) {
|
|
return get_implicit_arguments(m_env, d).size();
|
|
}
|
|
|
|
/**
|
|
\brief Return a vector \c v that is the implicit vector for some \c d in \c ds,
|
|
and <tt>v.size() == min{get_implicit_vector_size(d) | d in ds}</tt>
|
|
*/
|
|
std::vector<bool> const & get_smallest_implicit_vector(list<expr> const & ds) {
|
|
std::vector<bool> const * r = nullptr;
|
|
unsigned m = std::numeric_limits<unsigned>::max();
|
|
for (expr const & d : ds) {
|
|
std::vector<bool> const & v = get_implicit_arguments(m_env, d);
|
|
unsigned s = v.size();
|
|
if (s == 0) {
|
|
return v;
|
|
} else if (s < m) {
|
|
r = &v;
|
|
m = s;
|
|
}
|
|
}
|
|
lean_assert(r);
|
|
return *r;
|
|
}
|
|
|
|
/**
|
|
\brief Return <tt>min{get_implicit_vector_size(d) | d in ds}</tt>
|
|
*/
|
|
unsigned get_smallest_implicit_vector_size(list<expr> const & ds) {
|
|
return get_smallest_implicit_vector(ds).size();
|
|
}
|
|
|
|
/**
|
|
\brief Return the function associated with the given operator.
|
|
If the operator has been overloaded, it returns a choice expression
|
|
of the form <tt>(choice f_1 f_2 ... f_k)</tt> where f_i's are different options.
|
|
After we finish parsing, the elaborator
|
|
resolve/decide which f_i should be used.
|
|
*/
|
|
expr mk_fun(operator_info const & op, pos_info const & pos) {
|
|
list<expr> const & fs = op.get_denotations();
|
|
lean_assert(!is_nil(fs));
|
|
auto it = fs.begin();
|
|
expr r = *it;
|
|
++it;
|
|
if (it == fs.end()) {
|
|
return r;
|
|
} else {
|
|
unsigned min_sz = get_smallest_implicit_vector_size(fs);
|
|
buffer<expr> alternatives;
|
|
auto add_alternative = [&](expr const & d) {
|
|
unsigned sz = get_implicit_vector_size(d);
|
|
if (sz > min_sz) {
|
|
// must fill the difference with placeholders
|
|
buffer<expr> aux;
|
|
aux.push_back(d);
|
|
for (unsigned i = min_sz; i < sz; i++)
|
|
aux.push_back(save(mk_placeholder(), pos));
|
|
alternatives.push_back(mk_app(aux));
|
|
} else {
|
|
alternatives.push_back(d);
|
|
}
|
|
};
|
|
add_alternative(r);
|
|
for (; it != fs.end(); ++it)
|
|
add_alternative(*it);
|
|
return mk_choice(alternatives.size(), alternatives.data());
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Create an application for the given operator and
|
|
(explicit) arguments.
|
|
*/
|
|
expr mk_application(operator_info const & op, pos_info const & pos, unsigned num_args, expr const * args) {
|
|
buffer<expr> new_args;
|
|
expr f = save(mk_fun(op, pos), pos);
|
|
new_args.push_back(f);
|
|
// See lean_frontend.cpp for the definition of compatible denotations.
|
|
auto imp_args = get_smallest_implicit_vector(op.get_denotations());
|
|
unsigned i = 0;
|
|
for (unsigned j = 0; j < imp_args.size(); j++) {
|
|
if (imp_args[j]) {
|
|
new_args.push_back(save(mk_placeholder(), pos));
|
|
} else {
|
|
if (i >= num_args)
|
|
throw parser_error(sstream() << "unexpected number of arguments for denotation with implicit arguments, it expects " << num_args << " explicit argument(s)", pos);
|
|
new_args.push_back(args[i]);
|
|
i++;
|
|
}
|
|
}
|
|
for (; i < num_args; i++)
|
|
new_args.push_back(args[i]);
|
|
return save(mk_app(new_args), pos);
|
|
}
|
|
expr mk_application(operator_info const & op, pos_info const & pos, std::initializer_list<expr> const & l) {
|
|
return mk_application(op, pos, l.size(), l.begin());
|
|
}
|
|
expr mk_application(operator_info const & op, pos_info const & pos, expr const & arg) {
|
|
return mk_application(op, pos, 1, &arg);
|
|
}
|
|
expr mk_application(operator_info const & op, pos_info const & pos, buffer<expr> const & args) {
|
|
return mk_application(op, pos, args.size(), args.data());
|
|
}
|
|
|
|
/** \brief Parse a user defined prefix operator. */
|
|
expr parse_prefix(operator_info const & op) {
|
|
auto p = pos();
|
|
return mk_application(op, p, parse_expr(op.get_precedence()));
|
|
}
|
|
|
|
/** \brief Parse a user defined postfix operator. */
|
|
expr parse_postfix(expr const & left, operator_info const & op) {
|
|
return mk_application(op, pos(), left);
|
|
}
|
|
|
|
/** \brief Parse a user defined infix operator. */
|
|
expr parse_infix(expr const & left, operator_info const & op) {
|
|
auto p = pos();
|
|
return mk_application(op, p, {left, parse_expr(op.get_precedence()+1)});
|
|
}
|
|
|
|
/** \brief Parse a user defined infix-left operator. */
|
|
expr parse_infixl(expr const & left, operator_info const & op) {
|
|
auto p = pos();
|
|
return mk_application(op, p, {left, parse_expr(op.get_precedence())});
|
|
}
|
|
|
|
/** \brief Parse a user defined infix-right operator. */
|
|
expr parse_infixr(expr const & left, operator_info const & op) {
|
|
auto p = pos();
|
|
return mk_application(op, p, {left, parse_expr(op.get_precedence()-1)});
|
|
}
|
|
|
|
/**
|
|
\brief Throws an error if the current token is not an identifier named \c op_part.
|
|
If it is, move to the next toke. The error message assumes
|
|
this method has been used when parsing mixfix operators.
|
|
*/
|
|
void check_op_part(name const & op_part) {
|
|
if (!curr_is_identifier() || curr_name() != op_part)
|
|
throw parser_error(sstream() << "invalid mixfix operator application, '" << op_part << "' expected", pos());
|
|
next();
|
|
}
|
|
|
|
/**
|
|
\brief Auxiliary function for #parse_mixfixl and #parse_mixfixo
|
|
|
|
It parses (ID _)*
|
|
*/
|
|
void parse_mixfix_args(list<name> const & ops, unsigned prec, buffer<expr> & args) {
|
|
auto it = ops.begin();
|
|
++it;
|
|
while (it != ops.end()) {
|
|
check_op_part(*it);
|
|
args.push_back(parse_expr(prec));
|
|
++it;
|
|
}
|
|
}
|
|
|
|
/** \brief Parse user defined mixfixl operator. It has the form: ID _ ... ID _ */
|
|
expr parse_mixfixl(operator_info const & op) {
|
|
auto p = pos();
|
|
buffer<expr> args;
|
|
args.push_back(parse_expr(op.get_precedence()));
|
|
parse_mixfix_args(op.get_op_name_parts(), op.get_precedence(), args);
|
|
return mk_application(op, p, args);
|
|
}
|
|
|
|
/** \brief Parse user defined mixfixr operator. It has the form: _ ID ... _ ID */
|
|
expr parse_mixfixr(expr const & left, operator_info const & op) {
|
|
auto p = pos();
|
|
buffer<expr> args;
|
|
args.push_back(left);
|
|
auto parts = op.get_op_name_parts();
|
|
auto it = parts.begin();
|
|
++it;
|
|
while (it != parts.end()) {
|
|
args.push_back(parse_expr(op.get_precedence()));
|
|
check_op_part(*it);
|
|
++it;
|
|
}
|
|
return mk_application(op, p, args);
|
|
}
|
|
|
|
/** \brief Parse user defined mixfixr operator. It has the form: _ ID ... _ ID _ */
|
|
expr parse_mixfixo(expr const & left, operator_info const & op) {
|
|
auto p = pos();
|
|
buffer<expr> args;
|
|
args.push_back(left);
|
|
args.push_back(parse_expr(op.get_precedence()));
|
|
parse_mixfix_args(op.get_op_name_parts(), op.get_precedence(), args);
|
|
return mk_application(op, p, args);
|
|
}
|
|
|
|
/** \brief Parse user defined mixfixc operator. It has the form: ID _ ID ... _ ID */
|
|
expr parse_mixfixc(operator_info const & op) {
|
|
auto p = pos();
|
|
buffer<expr> args;
|
|
args.push_back(parse_expr(op.get_precedence()));
|
|
list<name> const & ops = op.get_op_name_parts();
|
|
auto it = ops.begin();
|
|
++it;
|
|
while (true) {
|
|
check_op_part(*it);
|
|
++it;
|
|
if (it == ops.end())
|
|
return mk_application(op, p, args);
|
|
args.push_back(parse_expr(op.get_precedence()));
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Try to find an object (Definition or Postulate) named \c
|
|
id in the frontend/environment. If there isn't one, then tries
|
|
to check if \c id is a builtin symbol. If it is not throws an error.
|
|
*/
|
|
expr get_name_ref(name const & id, pos_info const & p) {
|
|
optional<object> obj = m_env->find_object(id);
|
|
if (obj) {
|
|
object_kind k = obj->kind();
|
|
if (k == object_kind::Definition || k == object_kind::Postulate || k == object_kind::Builtin) {
|
|
if (has_implicit_arguments(m_env, obj->get_name())) {
|
|
std::vector<bool> const & imp_args = get_implicit_arguments(m_env, obj->get_name());
|
|
buffer<expr> args;
|
|
pos_info p = pos();
|
|
expr f = (k == object_kind::Builtin) ? obj->get_value() : mk_constant(obj->get_name());
|
|
args.push_back(save(f, p));
|
|
for (unsigned i = 0; i < imp_args.size(); i++) {
|
|
if (imp_args[i]) {
|
|
args.push_back(save(mk_placeholder(), pos()));
|
|
} else {
|
|
args.push_back(parse_expr(g_app_precedence));
|
|
}
|
|
}
|
|
return mk_app(args);
|
|
} else if (k == object_kind::Builtin) {
|
|
return obj->get_value();
|
|
} else {
|
|
return mk_constant(obj->get_name());
|
|
}
|
|
} else {
|
|
throw parser_error(sstream() << "invalid object reference, object '" << id << "' is not an expression.", p);
|
|
}
|
|
} else if (!m_check_identifiers) {
|
|
return mk_constant(id);
|
|
} else {
|
|
throw parser_error(sstream() << "unknown identifier '" << id << "'", p);
|
|
}
|
|
}
|
|
|
|
void propagate_position(expr const & e, pos_info p) {
|
|
for_each(e, [&](expr const & e, unsigned) {
|
|
if (m_expr_pos_info.find(e) == m_expr_pos_info.end()) {
|
|
save(e, p);
|
|
return true;
|
|
} else {
|
|
return false; // do not search children...
|
|
}
|
|
});
|
|
}
|
|
|
|
bool is_curr_begin_expr() const {
|
|
switch (curr()) {
|
|
case scanner::token::RightParen:
|
|
case scanner::token::RightCurlyBracket:
|
|
case scanner::token::Colon:
|
|
case scanner::token::Comma:
|
|
case scanner::token::Period:
|
|
case scanner::token::CommandId:
|
|
case scanner::token::Eof:
|
|
case scanner::token::ScriptBlock:
|
|
case scanner::token::In:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool is_curr_begin_tactic() const {
|
|
switch (curr()) {
|
|
case scanner::token::LeftParen: case scanner::token::Id: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
typedef buffer<std::pair<macro_arg_kind, void*>> macro_arg_stack;
|
|
struct macro_result {
|
|
optional<expr> m_expr;
|
|
optional<tactic> m_tactic;
|
|
macro_result(expr const & e):m_expr(e) {}
|
|
macro_result(tactic const & t):m_tactic(t) {}
|
|
macro_result() {}
|
|
};
|
|
|
|
/**
|
|
\brief Parse a macro implemented in Lua
|
|
*/
|
|
macro_result parse_macro(list<macro_arg_kind> const & arg_kinds, luaref const & fn, unsigned prec, macro_arg_stack & args,
|
|
pos_info const & p) {
|
|
if (arg_kinds) {
|
|
auto k = head(arg_kinds);
|
|
switch (k) {
|
|
case macro_arg_kind::Expr: {
|
|
expr e = parse_expr(prec);
|
|
args.emplace_back(k, &e);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Exprs: {
|
|
buffer<expr> exprs;
|
|
while (is_curr_begin_expr()) {
|
|
exprs.push_back(parse_expr(prec));
|
|
}
|
|
args.emplace_back(k, &exprs);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Bindings: {
|
|
mk_scope scope(*this);
|
|
bindings_buffer bindings;
|
|
parse_expr_bindings(bindings);
|
|
args.emplace_back(k, &bindings);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Comma:
|
|
check_comma_next("invalid macro, ',' expected");
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
case macro_arg_kind::Assign:
|
|
check_comma_next("invalid macro, ':=' expected");
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
case macro_arg_kind::String: {
|
|
std::string str = check_string_next("invalid macro, string expected");
|
|
args.emplace_back(k, &str);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Int: {
|
|
unsigned i = parse_unsigned("invalid macro argument, value does not fit in a machine integer");
|
|
args.emplace_back(k, &i);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Id: {
|
|
name n = curr_name();
|
|
next();
|
|
args.emplace_back(k, &n);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Tactic: {
|
|
tactic t = parse_tactic_expr();
|
|
args.emplace_back(k, &t);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}
|
|
case macro_arg_kind::Tactics: {
|
|
buffer<tactic> tactics;
|
|
while (is_curr_begin_tactic()) {
|
|
tactics.push_back(parse_tactic_expr());
|
|
}
|
|
args.emplace_back(k, &tactics);
|
|
return parse_macro(tail(arg_kinds), fn, prec, args, p);
|
|
}}
|
|
lean_unreachable();
|
|
} else {
|
|
// All arguments have been parsed, then call Lua procedure fn.
|
|
m_last_script_pos = p;
|
|
return using_script([&](lua_State * L) {
|
|
fn.push();
|
|
push_environment(L, m_env);
|
|
for (auto p : args) {
|
|
macro_arg_kind k = p.first;
|
|
void * arg = p.second;
|
|
switch (k) {
|
|
case macro_arg_kind::Expr:
|
|
push_expr(L, *static_cast<expr*>(arg));
|
|
break;
|
|
case macro_arg_kind::Exprs: {
|
|
auto const & exprs = *static_cast<buffer<expr>*>(arg);
|
|
lua_newtable(L);
|
|
int i = 1;
|
|
for (auto e : exprs) {
|
|
push_expr(L, e);
|
|
lua_rawseti(L, -2, i);
|
|
i = i + 1;
|
|
}
|
|
break;
|
|
}
|
|
case macro_arg_kind::Bindings: {
|
|
bindings_buffer const & bindings = *static_cast<bindings_buffer*>(arg);
|
|
lua_newtable(L);
|
|
int i = 1;
|
|
for (auto const & b : bindings) {
|
|
lua_newtable(L);
|
|
push_name(L, std::get<1>(b));
|
|
lua_rawseti(L, -2, 1);
|
|
push_expr(L, std::get<2>(b));
|
|
lua_rawseti(L, -2, 2);
|
|
lua_rawseti(L, -2, i);
|
|
i = i + 1;
|
|
}
|
|
break;
|
|
}
|
|
case macro_arg_kind::Id:
|
|
push_name(L, *static_cast<name*>(arg));
|
|
break;
|
|
case macro_arg_kind::String:
|
|
lua_pushstring(L, static_cast<std::string*>(arg)->c_str());
|
|
break;
|
|
case macro_arg_kind::Int:
|
|
lua_pushinteger(L, *static_cast<unsigned*>(arg));
|
|
break;
|
|
case macro_arg_kind::Tactic:
|
|
push_tactic(L, *static_cast<tactic*>(arg));
|
|
break;
|
|
case macro_arg_kind::Tactics: {
|
|
auto const & tactics = *static_cast<buffer<tactic>*>(arg);
|
|
lua_newtable(L);
|
|
int i = 1;
|
|
for (auto t : tactics) {
|
|
push_tactic(L, t);
|
|
lua_rawseti(L, -2, i);
|
|
i = i + 1;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
lean_unreachable();
|
|
}
|
|
}
|
|
pcall(L, args.size() + 1, 1, 0);
|
|
if (is_expr(L, -1)) {
|
|
expr r = to_expr(L, -1);
|
|
lua_pop(L, 1);
|
|
propagate_position(r, p);
|
|
return macro_result(r);
|
|
} else if (is_tactic(L, -1)) {
|
|
tactic t = to_tactic(L, -1);
|
|
lua_pop(L, 1);
|
|
return macro_result(t);
|
|
} else {
|
|
lua_pop(L, 1);
|
|
return macro_result();
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
expr parse_expr_macro(name const & id, pos_info const & p) {
|
|
lean_assert(m_expr_macros && m_expr_macros->find(id) != m_expr_macros->end());
|
|
auto m = m_expr_macros->find(id)->second;
|
|
macro_arg_stack args;
|
|
auto r = parse_macro(m.m_arg_kinds, m.m_fn, m.m_precedence, args, p);
|
|
if (r.m_expr) {
|
|
return *(r.m_expr);
|
|
} else {
|
|
throw parser_error("failed to execute macro, unexpected result type", p);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Parse an identifier that has a "null denotation" (See
|
|
paper: "Top down operator precedence"). A nud identifier is a
|
|
token that appears at the beginning of a language construct.
|
|
In Lean, local declarations (i.e., local functions), user
|
|
defined prefix, mixfixl and mixfixc operators, and global
|
|
functions can begin a language construct.
|
|
*/
|
|
expr parse_nud_id() {
|
|
auto p = pos();
|
|
name id = curr_name();
|
|
next();
|
|
auto it = m_local_decls.find(id);
|
|
if (it != m_local_decls.end()) {
|
|
return save(mk_var(m_num_local_decls - it->second - 1), p);
|
|
} else if (m_expr_macros && m_expr_macros->find(id) != m_expr_macros->end()) {
|
|
return parse_expr_macro(id, p);
|
|
} else {
|
|
operator_info op = find_nud(m_env, id);
|
|
if (op) {
|
|
switch (op.get_fixity()) {
|
|
case fixity::Prefix: return parse_prefix(op);
|
|
case fixity::Mixfixl: return parse_mixfixl(op);
|
|
case fixity::Mixfixc: return parse_mixfixc(op);
|
|
default: lean_unreachable(); // LCOV_EXCL_LINE
|
|
}
|
|
} else {
|
|
return save(get_name_ref(id, p), p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Parse an identifier that has a "left denotation" (See
|
|
paper: "Top down operator precedence"). A left identifier is a
|
|
token that appears inside of a construct (to left of the rest
|
|
of the construct). In Lean, local declarations (i.e., function
|
|
application arguments), user defined infix, infixl, infixr,
|
|
mixfixr and global values (as function application arguments)
|
|
can appear inside of a construct.
|
|
*/
|
|
expr parse_led_id(expr const & left) {
|
|
auto p = pos();
|
|
auto p2 = pos_of(left, p);
|
|
name id = curr_name();
|
|
next();
|
|
auto it = m_local_decls.find(id);
|
|
if (it != m_local_decls.end()) {
|
|
return save(mk_app(left, save(mk_var(m_num_local_decls - it->second - 1), p)), p2);
|
|
} else if (m_expr_macros && m_expr_macros->find(id) != m_expr_macros->end()) {
|
|
return save(mk_app(left, parse_expr_macro(id, p)), p2);
|
|
} else {
|
|
operator_info op = find_led(m_env, id);
|
|
if (op) {
|
|
switch (op.get_fixity()) {
|
|
case fixity::Infix: return parse_infix(left, op);
|
|
case fixity::Infixl: return parse_infixl(left, op);
|
|
case fixity::Infixr: return parse_infixr(left, op);
|
|
case fixity::Mixfixr: return parse_mixfixr(left, op);
|
|
case fixity::Mixfixo: return parse_mixfixo(left, op);
|
|
case fixity::Postfix: return parse_postfix(left, op);
|
|
default: lean_unreachable(); // LCOV_EXCL_LINE
|
|
}
|
|
} else {
|
|
return save(mk_app(left, save(get_name_ref(id, p), p)), p2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Parse <tt>expr '=' expr</tt>. */
|
|
expr parse_eq(expr const & left) {
|
|
auto p = pos();
|
|
next();
|
|
expr right = parse_expr(g_eq_precedence);
|
|
return save(mk_eq(left, right), p);
|
|
}
|
|
|
|
/** \brief Parse <tt>expr '->' expr</tt>. */
|
|
expr parse_arrow(expr const & left) {
|
|
auto p = pos();
|
|
next();
|
|
mk_scope scope(*this);
|
|
register_binding(g_unused);
|
|
// The -1 is a trick to get right associativity in Pratt's parsers
|
|
expr right = parse_expr(g_arrow_precedence-1);
|
|
return save(mk_arrow(left, right), p);
|
|
}
|
|
|
|
/** \brief Parse <tt>'(' expr ')'</tt>. */
|
|
expr parse_lparen() {
|
|
auto p = pos();
|
|
next();
|
|
expr r = curr() == scanner::token::Type ? parse_type(true) : parse_expr();
|
|
check_rparen_next("invalid expression, ')' expected");
|
|
return save(r, p);
|
|
}
|
|
|
|
/**
|
|
\brief Parse a sequence of identifiers <tt>ID*</tt>. Store the
|
|
result in \c result.
|
|
*/
|
|
void parse_names(buffer<std::pair<pos_info, name>> & result) {
|
|
while (curr_is_identifier()) {
|
|
result.emplace_back(pos(), curr_name());
|
|
next();
|
|
}
|
|
}
|
|
|
|
/** \brief Register the name \c n as a local declaration. */
|
|
void register_binding(name const & n) {
|
|
unsigned lvl = m_num_local_decls;
|
|
m_local_decls.insert(n, lvl);
|
|
m_num_local_decls++;
|
|
lean_assert(m_local_decls.find(n)->second == lvl);
|
|
}
|
|
|
|
/**
|
|
\brief Parse <tt>ID ... ID ':' expr</tt>, where the expression
|
|
represents the type of the identifiers.
|
|
|
|
\remark If \c implicit_decl is true, then the bindings should be
|
|
marked as implicit. This flag is set to true, for example,
|
|
when we are parsing definitions such as:
|
|
<code> Definition f {A : Type} (a b : A), A := ... </code>
|
|
The <code>{A : Type}</code> is considered an implicit argument declaration.
|
|
|
|
\remark If \c suppress_type is true, then the type doesn't
|
|
need to be provided. That is, we automatically include a placeholder.
|
|
*/
|
|
void parse_simple_bindings(bindings_buffer & result, bool implicit_decl, bool suppress_type) {
|
|
buffer<std::pair<pos_info, name>> names;
|
|
parse_names(names);
|
|
optional<expr> type;
|
|
if (!suppress_type) {
|
|
check_colon_next("invalid binder, ':' expected");
|
|
type = parse_expr();
|
|
} else if (curr_is_colon()) {
|
|
next();
|
|
type = parse_expr();
|
|
}
|
|
unsigned sz = result.size();
|
|
result.resize(sz + names.size());
|
|
for (std::pair<pos_info, name> const & n : names) register_binding(n.second);
|
|
unsigned i = names.size();
|
|
while (i > 0) {
|
|
--i;
|
|
expr arg_type;
|
|
if (type)
|
|
arg_type = lift_free_vars(*type, i);
|
|
else
|
|
arg_type = save(mk_placeholder(), names[i].first);
|
|
result[sz + i] = std::make_tuple(names[i].first, names[i].second, arg_type, implicit_decl);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Parse a sequence of <tt>'(' ID ... ID ':' expr ')'</tt>.
|
|
|
|
This is used when parsing lambda, Pi, forall/exists expressions and
|
|
definitions.
|
|
|
|
\remark If implicit_decls is true, then we allow declarations
|
|
with curly braces. These declarations are used to tag implicit
|
|
arguments. Such as:
|
|
<code> Definition f {A : Type} (a b : A) : A := ... </code>
|
|
|
|
\see parse_simple_bindings
|
|
*/
|
|
void parse_bindings(bindings_buffer & result, bool implicit_decls, bool suppress_type) {
|
|
if (curr_is_identifier()) {
|
|
parse_simple_bindings(result, false, suppress_type);
|
|
} else {
|
|
// (ID ... ID : type) ... (ID ... ID : type)
|
|
if (implicit_decls) {
|
|
if (!curr_is_lparen() && !curr_is_lcurly())
|
|
throw parser_error("invalid binder, '(', '{' or identifier expected", pos());
|
|
} else {
|
|
if (!curr_is_lparen())
|
|
throw parser_error("invalid binder, '(' or identifier expected", pos());
|
|
}
|
|
bool implicit = curr_is_lcurly();
|
|
next();
|
|
parse_simple_bindings(result, implicit, suppress_type);
|
|
if (!implicit)
|
|
check_rparen_next("invalid binder, ')' expected");
|
|
else
|
|
check_rcurly_next("invalid binder, '}' expected");
|
|
while (curr_is_lparen() || (implicit_decls && curr_is_lcurly())) {
|
|
bool implicit = curr_is_lcurly();
|
|
next();
|
|
parse_simple_bindings(result, implicit, suppress_type);
|
|
if (!implicit)
|
|
check_rparen_next("invalid binder, ')' expected");
|
|
else
|
|
check_rcurly_next("invalid binder, '}' expected");
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Parse bindings for expressions such as: lambda, pi, forall, exists */
|
|
void parse_expr_bindings(bindings_buffer & result) {
|
|
parse_bindings(result, false, true);
|
|
}
|
|
|
|
/** \brief Parse bindings for object such as: axioms, variables ... */
|
|
void parse_var_decl_bindings(bindings_buffer & result) {
|
|
parse_bindings(result, true, false);
|
|
}
|
|
|
|
/** \brief Parse bindings for object such as: theorems, definitions ... */
|
|
void parse_definition_bindings(bindings_buffer & result) {
|
|
parse_bindings(result, true, true);
|
|
}
|
|
|
|
/**
|
|
\brief Create a lambda/Pi abstraction, using the giving binders
|
|
and body.
|
|
*/
|
|
expr mk_abstraction(bool is_lambda, bindings_buffer const & bindings, expr const & body) {
|
|
expr result = body;
|
|
unsigned i = bindings.size();
|
|
while (i > 0) {
|
|
--i;
|
|
pos_info p = std::get<0>(bindings[i]);
|
|
if (is_lambda)
|
|
result = save(mk_lambda(std::get<1>(bindings[i]), std::get<2>(bindings[i]), result), p);
|
|
else
|
|
result = save(mk_pi(std::get<1>(bindings[i]), std::get<2>(bindings[i]), result), p);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/** \brief Parse lambda/Pi abstraction. */
|
|
expr parse_abstraction(bool is_lambda) {
|
|
next();
|
|
mk_scope scope(*this);
|
|
bindings_buffer bindings;
|
|
parse_expr_bindings(bindings);
|
|
check_comma_next("invalid abstraction, ',' expected");
|
|
expr result = parse_expr();
|
|
return mk_abstraction(is_lambda, bindings, result);
|
|
}
|
|
|
|
/** \brief Parse lambda abstraction. */
|
|
expr parse_lambda() {
|
|
return parse_abstraction(true);
|
|
}
|
|
|
|
/** \brief Parse Pi abstraction. */
|
|
expr parse_pi() {
|
|
return parse_abstraction(false);
|
|
}
|
|
|
|
/** \brief Parse forall/exists */
|
|
expr parse_quantifier(bool is_forall) {
|
|
next();
|
|
mk_scope scope(*this);
|
|
bindings_buffer bindings;
|
|
parse_expr_bindings(bindings);
|
|
check_comma_next("invalid quantifier, ',' expected");
|
|
expr result = parse_expr();
|
|
unsigned i = bindings.size();
|
|
while (i > 0) {
|
|
--i;
|
|
pos_info p = std::get<0>(bindings[i]);
|
|
expr lambda = save(mk_lambda(std::get<1>(bindings[i]), std::get<2>(bindings[i]), result), p);
|
|
if (is_forall)
|
|
result = save(mk_forall(std::get<2>(bindings[i]), lambda), p);
|
|
else
|
|
result = save(mk_exists(std::get<2>(bindings[i]), lambda), p);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/** \brief Parse <tt>'forall' bindings ',' expr</tt>. */
|
|
expr parse_forall() {
|
|
return parse_quantifier(true);
|
|
}
|
|
|
|
/** \brief Parse <tt>'exists' bindings ',' expr</tt>. */
|
|
expr parse_exists() {
|
|
return parse_quantifier(false);
|
|
}
|
|
|
|
/** \brief Parse Let expression. */
|
|
expr parse_let() {
|
|
next();
|
|
mk_scope scope(*this);
|
|
buffer<std::tuple<pos_info, name, optional<expr>, expr>> bindings;
|
|
while (true) {
|
|
auto p = pos();
|
|
name id = check_identifier_next("invalid let expression, identifier expected");
|
|
optional<expr> type;
|
|
if (curr_is_colon()) {
|
|
next();
|
|
type = parse_expr();
|
|
}
|
|
check_assign_next("invalid let expression, ':=' expected");
|
|
expr val = parse_expr();
|
|
register_binding(id);
|
|
bindings.emplace_back(p, id, type, val);
|
|
if (curr_is_in()) {
|
|
next();
|
|
expr r = parse_expr();
|
|
unsigned i = bindings.size();
|
|
while (i > 0) {
|
|
--i;
|
|
auto p = std::get<0>(bindings[i]);
|
|
r = save(mk_let(std::get<1>(bindings[i]), std::get<2>(bindings[i]), std::get<3>(bindings[i]), r), p);
|
|
}
|
|
return r;
|
|
} else {
|
|
check_comma_next("invalid let expression, ',' or 'in' expected");
|
|
}
|
|
}
|
|
}
|
|
|
|
/** \brief Parse a natural number value. */
|
|
expr parse_nat() {
|
|
auto p = pos();
|
|
expr r = save(mk_nat_value(m_scanner.get_num_val().get_numerator()), p);
|
|
next();
|
|
return r;
|
|
}
|
|
|
|
expr parse_decimal() {
|
|
auto p = pos();
|
|
expr r = save(mk_real_value(m_scanner.get_num_val()), p);
|
|
next();
|
|
return r;
|
|
}
|
|
|
|
expr parse_string() {
|
|
// TODO(Leo)
|
|
not_implemented_yet();
|
|
}
|
|
|
|
/** \brief Parse <tt>'Type'</tt> and <tt>'Type' level</tt> expressions. */
|
|
expr parse_type(bool level_expected) {
|
|
auto p = pos();
|
|
next();
|
|
if (level_expected) {
|
|
return save(mk_type(parse_level()), p);
|
|
} else {
|
|
return save(Type(), p);
|
|
}
|
|
}
|
|
|
|
/** \brief Parse \c _ a hole that must be filled by the elaborator. */
|
|
expr parse_placeholder() {
|
|
auto p = pos();
|
|
next();
|
|
return save(mk_placeholder(), p);
|
|
}
|
|
|
|
tactic parse_tactic_macro(name tac_id, pos_info const & p) {
|
|
lean_assert(m_tactic_macros && m_tactic_macros->find(tac_id) != m_tactic_macros->end());
|
|
next();
|
|
auto m = m_tactic_macros->find(tac_id)->second;
|
|
macro_arg_stack args;
|
|
flet<bool> set(m_check_identifiers, false);
|
|
auto r = parse_macro(m.m_arg_kinds, m.m_fn, m.m_precedence, args, p);
|
|
if (r.m_tactic) {
|
|
return *(r.m_tactic);
|
|
} else {
|
|
throw parser_error("failed to execute macro, unexpected result type, a tactic was expected", p);
|
|
}
|
|
}
|
|
|
|
/** \brief Parse a tactic expression, it can be
|
|
|
|
1) A Lua Script Block expression that returns a tactic
|
|
2) '(' expr ')' where expr is a proof term
|
|
3) identifier that is the name of a tactic or proof term.
|
|
*/
|
|
tactic parse_tactic_expr() {
|
|
auto p = pos();
|
|
if (curr() == scanner::token::ScriptBlock) {
|
|
parse_script_expr();
|
|
return using_script([&](lua_State * L) {
|
|
try {
|
|
return to_tactic(L, -1);
|
|
} catch (...) {
|
|
throw parser_error("invalid script-block, it must return a tactic", p);
|
|
}
|
|
});
|
|
} else if (curr_is_identifier() && m_tactic_macros && m_tactic_macros->find(curr_name()) != m_tactic_macros->end()) {
|
|
return parse_tactic_macro(curr_name(), p);
|
|
} else if (curr_is_lparen()) {
|
|
next();
|
|
tactic r = parse_tactic_expr();
|
|
check_rparen_next("invalid tactic, ')' expected");
|
|
return r;
|
|
} else {
|
|
name n = check_identifier_next("invalid tactic, identifier, tactic macro, '(', or 'script-block' expected");
|
|
return using_script([&](lua_State * L) {
|
|
lua_getglobal(L, n.to_string().c_str());
|
|
try {
|
|
if (is_tactic(L, -1)) {
|
|
tactic t = to_tactic(L, -1);
|
|
lua_pop(L, 1);
|
|
return t;
|
|
} else {
|
|
throw parser_error(sstream() << "invalid tactic, '" << n << "' is not a tactic in script environment", p);
|
|
}
|
|
} catch (...) {
|
|
lua_pop(L, 1);
|
|
throw parser_error(sstream() << "unknown tactic '" << n << "'", p);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
/** \brief Parse <tt>'show' expr 'by' tactic</tt> */
|
|
expr parse_show_expr() {
|
|
auto p = pos();
|
|
next();
|
|
expr t = parse_expr();
|
|
if (curr_is_comma()) {
|
|
next();
|
|
expr b = parse_expr();
|
|
return mk_let("show-expression", t, b, Var(0));
|
|
} else {
|
|
check_next(scanner::token::By, "invalid 'show' expression, 'by' or ',' expected");
|
|
tactic tac = parse_tactic_expr();
|
|
expr r = mk_placeholder(some_expr(t));
|
|
m_tactic_hints.insert(mk_pair(r, tac));
|
|
return save(r, p);
|
|
}
|
|
}
|
|
|
|
/** \brief Parse <tt>'by' tactic</tt> */
|
|
expr parse_by_expr() {
|
|
auto p = pos();
|
|
next();
|
|
tactic tac = parse_tactic_expr();
|
|
expr r = mk_placeholder();
|
|
m_tactic_hints.insert(mk_pair(r, tac));
|
|
return save(r, p);
|
|
}
|
|
|
|
/**
|
|
\brief Auxiliary method used when processing the beginning of an expression.
|
|
*/
|
|
expr parse_nud() {
|
|
switch (curr()) {
|
|
case scanner::token::Id: return parse_nud_id();
|
|
case scanner::token::LeftParen: return parse_lparen();
|
|
case scanner::token::Lambda: return parse_lambda();
|
|
case scanner::token::Pi: return parse_pi();
|
|
case scanner::token::Forall: return parse_forall();
|
|
case scanner::token::Exists: return parse_exists();
|
|
case scanner::token::Let: return parse_let();
|
|
case scanner::token::NatVal: return parse_nat();
|
|
case scanner::token::DecimalVal: return parse_decimal();
|
|
case scanner::token::StringVal: return parse_string();
|
|
case scanner::token::Placeholder: return parse_placeholder();
|
|
case scanner::token::Type: return parse_type(false);
|
|
case scanner::token::Show: return parse_show_expr();
|
|
case scanner::token::By: return parse_by_expr();
|
|
default:
|
|
throw parser_error("invalid expression, unexpected token", pos());
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Create a new application and associate position of left with the resultant expression.
|
|
*/
|
|
expr mk_app_left(expr const & left, expr const & arg) {
|
|
if (is_type(left))
|
|
throw parser_error("Type is not a function, use '(Type <universe>)' for specifying a particular type universe", pos());
|
|
auto it = m_expr_pos_info.find(left);
|
|
lean_assert(it != m_expr_pos_info.end());
|
|
return save(mk_app(left, arg), it->second);
|
|
}
|
|
|
|
/**
|
|
\brief Auxiliary method used when processing the 'inside' of an expression.
|
|
*/
|
|
expr parse_led(expr const & left) {
|
|
switch (curr()) {
|
|
case scanner::token::Id: return parse_led_id(left);
|
|
case scanner::token::Eq: return parse_eq(left);
|
|
case scanner::token::Arrow: return parse_arrow(left);
|
|
case scanner::token::LeftParen: return mk_app_left(left, parse_lparen());
|
|
case scanner::token::NatVal: return mk_app_left(left, parse_nat());
|
|
case scanner::token::DecimalVal: return mk_app_left(left, parse_decimal());
|
|
case scanner::token::StringVal: return mk_app_left(left, parse_string());
|
|
case scanner::token::Placeholder: return mk_app_left(left, parse_placeholder());
|
|
case scanner::token::Type: return mk_app_left(left, parse_type(false));
|
|
default: return left;
|
|
}
|
|
}
|
|
|
|
/** \brief Return the binding power of the current token (when parsing expression). */
|
|
unsigned curr_lbp() {
|
|
switch (curr()) {
|
|
case scanner::token::Id: {
|
|
name const & id = curr_name();
|
|
auto it = m_local_decls.find(id);
|
|
if (it != m_local_decls.end()) {
|
|
return g_app_precedence;
|
|
} else if (m_expr_macros && m_expr_macros->find(id) != m_expr_macros->end()) {
|
|
return m_expr_macros->find(id)->second.m_precedence;
|
|
} else {
|
|
optional<unsigned> prec = get_lbp(m_env, id);
|
|
if (prec)
|
|
return *prec;
|
|
else
|
|
return g_app_precedence;
|
|
}
|
|
}
|
|
case scanner::token::Eq : return g_eq_precedence;
|
|
case scanner::token::Arrow : return g_arrow_precedence;
|
|
case scanner::token::LeftParen: case scanner::token::NatVal: case scanner::token::DecimalVal:
|
|
case scanner::token::StringVal: case scanner::token::Type: case scanner::token::Placeholder:
|
|
return g_app_precedence;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/** \brief Parse an expression */
|
|
expr parse_expr(unsigned rbp = 0) {
|
|
expr left = parse_nud();
|
|
while (rbp < curr_lbp()) {
|
|
left = parse_led(left);
|
|
}
|
|
return left;
|
|
}
|
|
/*@}*/
|
|
|
|
/**
|
|
@name Parse Commands
|
|
*/
|
|
/*@{*/
|
|
|
|
/**
|
|
\brief Register implicit arguments for the definition or
|
|
postulate named \c n. The fourth element in the tuple bindings
|
|
is a flag indiciating whether the argument is implicit or not.
|
|
*/
|
|
void register_implicit_arguments(name const & n, bindings_buffer & bindings) {
|
|
bool found = false;
|
|
buffer<bool> imp_args;
|
|
for (unsigned i = 0; i < bindings.size(); i++) {
|
|
imp_args.push_back(std::get<3>(bindings[i]));
|
|
if (imp_args.back())
|
|
found = true;
|
|
}
|
|
if (found)
|
|
mark_implicit_arguments(m_env, n, imp_args.size(), imp_args.data());
|
|
}
|
|
|
|
void display_proof_state(proof_state s) {
|
|
regular(m_io_state) << "Proof state:\n" << s << endl;
|
|
}
|
|
|
|
void display_proof_state_if_interactive(proof_state s) {
|
|
if (m_interactive)
|
|
display_proof_state(s);
|
|
}
|
|
|
|
typedef std::vector<proof_state_seq> proof_state_seq_stack;
|
|
|
|
/**
|
|
\brief Apply tactic \c t to state \c s.
|
|
When \c t succeeds, it returns the head and tail of the output state sequence.
|
|
Throws an exception if the tactic fails, and use \c p to sign the error position.
|
|
*/
|
|
std::pair<proof_state, proof_state_seq> apply_tactic(proof_state const & s, tactic const & t, pos_info const & p) {
|
|
proof_state_seq::maybe_pair r;
|
|
code_with_callbacks([&]() {
|
|
// t may have call-backs we should set ios in the script_state
|
|
proof_state_seq seq = t(m_env, m_io_state, s);
|
|
r = seq.pull();
|
|
});
|
|
if (r) {
|
|
return mk_pair(r->first, r->second);
|
|
} else {
|
|
throw tactic_cmd_error("tactic failed", p, s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Try to create a proof for the input state \c s.
|
|
It basically applies the proof_builder if \c s does not contain
|
|
any goals left. The position information is used to throw an exception
|
|
if \c s is not a final state.
|
|
|
|
The resultant proof must have type \c expected_type in the context \c ctx.
|
|
*/
|
|
expr mk_proof_for(proof_state const & s, pos_info const & p, context const & ctx, expr const & expected_type) {
|
|
if (s.is_proof_final_state()) {
|
|
assignment a(s.get_menv().copy());
|
|
proof_map m;
|
|
expr pr = s.get_proof_builder()(m, a);
|
|
if (has_metavar(pr)) {
|
|
// Some tactics generate metavariables that can only be instantiated by type inference elaboration.
|
|
// Example: apply_tactic.
|
|
metavar_env menv = s.get_menv().copy();
|
|
buffer<unification_constraint> ucs;
|
|
expr pr_type = type_checker(m_env).check(pr, ctx, menv, ucs);
|
|
ucs.push_back(mk_convertible_constraint(ctx, pr_type, expected_type, mk_type_match_justification(ctx, expected_type, pr)));
|
|
elaborator elb(m_env, menv, ucs.size(), ucs.data(), m_io_state.get_options());
|
|
metavar_env new_menv = elb.next();
|
|
pr = new_menv->instantiate_metavars(pr);
|
|
if (has_metavar(pr))
|
|
throw exception("synthesized proof object has unsolved metavars");
|
|
}
|
|
return pr;
|
|
} else {
|
|
throw tactic_cmd_error("invalid 'done' command, proof cannot be produced from this state", p, s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Execute the \c back (backtrack) tactic command. It
|
|
succeeds if the stack \c stack contains proof states. When it
|
|
succeeds, \c s is updated with the next state in the state
|
|
sequence on the top of \c stack. The new state is also removed
|
|
from the stack.
|
|
*/
|
|
void back_cmd(/* inout */ proof_state_seq_stack & stack, /* inout */ proof_state & s) {
|
|
auto p = pos();
|
|
next();
|
|
while (!stack.empty()) {
|
|
check_interrupted();
|
|
lazy_list<proof_state> seq = stack.back();
|
|
stack.pop_back();
|
|
proof_state_seq::maybe_pair r;
|
|
code_with_callbacks([&]() {
|
|
r = seq.pull();
|
|
});
|
|
if (r) {
|
|
stack.push_back(r->second);
|
|
s = r->first;
|
|
return;
|
|
}
|
|
}
|
|
throw tactic_cmd_error("failed to backtrack", p, s);
|
|
}
|
|
|
|
/**
|
|
\brief Execute the tactic.
|
|
This command just applies the tactic to the input state \c s.
|
|
If it succeeds, \c s is assigned to the head of the output
|
|
state sequence produced by the tactic. The rest/tail of the
|
|
output state sequence is stored on the top of the stack \c
|
|
stack.
|
|
*/
|
|
void tactic_cmd(/* inout */ proof_state_seq_stack & stack, /* inout */ proof_state & s) {
|
|
auto tac_pos = pos();
|
|
tactic t = parse_tactic_expr();
|
|
auto r = apply_tactic(s, t, tac_pos);
|
|
s = r.first;
|
|
stack.push_back(r.second);
|
|
}
|
|
|
|
/**
|
|
\brief Execute the \c done tactic command. It succeeds if
|
|
a proof for \c s can be built.
|
|
*/
|
|
expr done_cmd(proof_state const & s, context const & ctx, expr const & expected_type) {
|
|
auto p = pos();
|
|
next();
|
|
return mk_proof_for(s, p, ctx, expected_type);
|
|
}
|
|
|
|
/**
|
|
\brief Parse tactic command sequence for solving input state \c s.
|
|
|
|
The proof for \c s must have type \c expected_type in the context \c ctx.
|
|
*/
|
|
expr parse_tactic_cmds(proof_state s, context const & ctx, expr const & expected_type) {
|
|
proof_state_seq_stack stack;
|
|
optional<expr> pr;
|
|
enum class status { Continue, Done, Eof, Abort };
|
|
status st = status::Continue;
|
|
while (st == status::Continue) {
|
|
protected_call(
|
|
[&]() {
|
|
auto p = pos();
|
|
check_interrupted();
|
|
name id;
|
|
switch (curr()) {
|
|
case scanner::token::Period:
|
|
display_proof_state_if_interactive(s);
|
|
show_tactic_prompt();
|
|
next();
|
|
break;
|
|
case scanner::token::Eof:
|
|
st = status::Eof;
|
|
break;
|
|
case scanner::token::Id:
|
|
id = curr_name();
|
|
if (id == g_back) {
|
|
back_cmd(stack, s);
|
|
} else if (id == g_done) {
|
|
pr = done_cmd(s, ctx, expected_type);
|
|
if (pr)
|
|
st = status::Done;
|
|
} else if (id == g_abort) {
|
|
next();
|
|
st = status::Abort;
|
|
} else {
|
|
tactic_cmd(stack, s);
|
|
}
|
|
break;
|
|
case scanner::token::ScriptBlock:
|
|
tactic_cmd(stack, s);
|
|
break;
|
|
case scanner::token::CommandId:
|
|
st = status::Abort;
|
|
break;
|
|
default:
|
|
next();
|
|
throw tactic_cmd_error("invalid tactic command, identifier expected", p, s);
|
|
}
|
|
},
|
|
[&]() {
|
|
// Keep consuming tokens until we find a Command or End-of-file or Tactic command
|
|
show_tactic_prompt();
|
|
while (curr() != scanner::token::CommandId && curr() != scanner::token::Eof &&
|
|
curr() != scanner::token::Period && !curr_is_tactic_cmd())
|
|
next();
|
|
if (curr_is_period())
|
|
next();
|
|
});
|
|
}
|
|
switch (st) {
|
|
case status::Done: return *pr;
|
|
case status::Eof: throw tactic_cmd_error("invalid tactic command, unexpected end of file", pos(), s);
|
|
case status::Abort: throw tactic_cmd_error("failed to prove theorem, proof has been aborted", pos(), s);
|
|
default: lean_unreachable(); // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Return a 'hint' tactic (if it exists) for the given metavariable.
|
|
If the metavariable is not associated with any hint, then return the
|
|
null tactic. The method also returns the position of the hint.
|
|
*/
|
|
std::pair<optional<tactic>, pos_info> get_tactic_for(expr const & mvar) {
|
|
expr placeholder = m_elaborator.get_original(mvar);
|
|
auto it = m_tactic_hints.find(placeholder);
|
|
if (it != m_tactic_hints.end()) {
|
|
return mk_pair(some_tactic(it->second), pos_of(placeholder, pos()));
|
|
} else {
|
|
return mk_pair(none_tactic(), pos_of(placeholder, pos()));
|
|
}
|
|
}
|
|
|
|
std::pair<expr, context> get_metavar_ctx_and_type(expr const & mvar, metavar_env const & menv) {
|
|
expr mvar_type = menv->instantiate_metavars(menv->get_type(mvar));
|
|
buffer<context_entry> new_entries;
|
|
for (auto e : menv->get_context(mvar)) {
|
|
optional<expr> d = e.get_domain();
|
|
optional<expr> b = e.get_body();
|
|
if (d) d = menv->instantiate_metavars(*d);
|
|
if (b) b = menv->instantiate_metavars(*b);
|
|
if (d)
|
|
new_entries.emplace_back(e.get_name(), *d, b);
|
|
else
|
|
new_entries.emplace_back(e.get_name(), d, *b);
|
|
}
|
|
context mvar_ctx(to_list(new_entries.begin(), new_entries.end()));
|
|
return mk_pair(mvar_type, mvar_ctx);
|
|
}
|
|
|
|
/** \brief Throw an exception if \c e contains a metavariable */
|
|
void check_no_metavar(expr const & e, metavar_env const & menv, char const * msg) {
|
|
auto m = find(e, [](expr const & e) -> bool { return is_metavar(e); });
|
|
if (m) {
|
|
auto p = get_metavar_ctx_and_type(*m, menv);
|
|
throw metavar_not_synthesized_exception(p.second, *m, p.first, msg);
|
|
}
|
|
}
|
|
void check_no_metavar(std::pair<expr, metavar_env> const & p, char const * msg) {
|
|
check_no_metavar(p.first, p.second, msg);
|
|
}
|
|
|
|
/**
|
|
\brief Try to fill the 'holes' in \c val using tactics.
|
|
The metavar_env \c menv contains the definition of the metavariables occurring in \c val.
|
|
|
|
If a 'hole' is associated with a "hint tactic" ('show-by' and 'by' constructs),
|
|
then this will be the tactic used to "fill" the hole. Otherwise,
|
|
a tactic command sequence is expected in the input stream being parsed.
|
|
*/
|
|
expr apply_tactics(expr const & val, metavar_env & menv) {
|
|
buffer<expr> mvars;
|
|
for_each(val, [&](expr const & e, unsigned) {
|
|
if (is_metavar(e)) {
|
|
mvars.push_back(e);
|
|
}
|
|
return true;
|
|
});
|
|
std::sort(mvars.begin(), mvars.end(), [](expr const & e1, expr const & e2) { return is_lt(e1, e2, false); });
|
|
for (auto mvar : mvars) {
|
|
auto p = get_metavar_ctx_and_type(mvar, menv);
|
|
expr mvar_type = p.first;
|
|
context mvar_ctx = p.second;
|
|
if (has_metavar(mvar_type))
|
|
throw metavar_not_synthesized_exception(mvar_ctx, mvar, mvar_type,
|
|
"failed to synthesize metavar, its type contains metavariables");
|
|
try {
|
|
proof_state s = to_proof_state(m_env, mvar_ctx, mvar_type);
|
|
std::pair<optional<tactic>, pos_info> hint_and_pos = get_tactic_for(mvar);
|
|
if (hint_and_pos.first) {
|
|
// metavariable has an associated tactic hint
|
|
s = apply_tactic(s, *(hint_and_pos.first), hint_and_pos.second).first;
|
|
menv->assign(mvar, mk_proof_for(s, hint_and_pos.second, mvar_ctx, mvar_type));
|
|
} else {
|
|
if (curr_is_period()) {
|
|
display_proof_state_if_interactive(s);
|
|
show_tactic_prompt();
|
|
next();
|
|
}
|
|
expr mvar_val = parse_tactic_cmds(s, mvar_ctx, mvar_type);
|
|
menv->assign(mvar, mvar_val);
|
|
}
|
|
} catch (type_is_not_proposition_exception &) {
|
|
throw metavar_not_synthesized_exception(mvar_ctx, mvar, mvar_type, "failed to synthesize metavar, its type is not a proposition");
|
|
}
|
|
}
|
|
return menv->instantiate_metavars(val);
|
|
}
|
|
|
|
/** \brief Auxiliary method used for parsing definitions and theorems. */
|
|
void parse_def_core(bool is_definition) {
|
|
next();
|
|
expr pre_type, pre_val;
|
|
name id = check_identifier_next("invalid definition, identifier expected");
|
|
bindings_buffer bindings;
|
|
if (curr_is_colon()) {
|
|
next();
|
|
pre_type = parse_expr();
|
|
if (!is_definition && curr_is_period()) {
|
|
pre_val = save(mk_placeholder(), pos());
|
|
} else {
|
|
check_assign_next("invalid definition, ':=' expected");
|
|
pre_val = parse_expr();
|
|
}
|
|
} else if (is_definition && curr_is_assign()) {
|
|
auto p = pos();
|
|
next();
|
|
pre_type = save(mk_placeholder(), p);
|
|
pre_val = parse_expr();
|
|
} else {
|
|
mk_scope scope(*this);
|
|
parse_definition_bindings(bindings);
|
|
expr type_body;
|
|
if (curr_is_colon()) {
|
|
next();
|
|
type_body = parse_expr();
|
|
} else {
|
|
auto p = pos();
|
|
type_body = save(mk_placeholder(), p);
|
|
}
|
|
pre_type = mk_abstraction(false, bindings, type_body);
|
|
if (!is_definition && curr_is_period()) {
|
|
pre_val = mk_abstraction(true, bindings, mk_placeholder());
|
|
} else {
|
|
check_assign_next("invalid definition, ':=' expected");
|
|
expr val_body = parse_expr();
|
|
pre_val = mk_abstraction(true, bindings, val_body);
|
|
}
|
|
}
|
|
auto r = m_elaborator(id, pre_type, pre_val);
|
|
expr type = std::get<0>(r);
|
|
expr val = std::get<1>(r);
|
|
metavar_env menv = std::get<2>(r);
|
|
check_no_metavar(type, menv, "invalid definition, type still contains metavariables after elaboration");
|
|
if (has_metavar(val)) {
|
|
val = apply_tactics(val, menv);
|
|
} else {
|
|
check_no_metavar(val, menv, "invalid definition, value still contains metavariables after elaboration");
|
|
}
|
|
lean_assert(!has_metavar(val));
|
|
if (is_definition) {
|
|
m_env->add_definition(id, type, val);
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Defined: " << id << endl;
|
|
} else {
|
|
m_env->add_theorem(id, type, val);
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Proved: " << id << endl;
|
|
}
|
|
register_implicit_arguments(id, bindings);
|
|
}
|
|
|
|
/**
|
|
\brief Parse a Definition. It has one of the following two forms:
|
|
|
|
1) 'Definition' ID ':' expr ':=' expr
|
|
|
|
2) 'Definition' ID bindings ':' expr ':=' expr
|
|
*/
|
|
void parse_definition() {
|
|
parse_def_core(true);
|
|
}
|
|
|
|
/**
|
|
\brief Parse a Theorem. It has one of the following two forms:
|
|
|
|
1) 'Theorem' ID ':' expr ':=' expr
|
|
|
|
2) 'Theorem' ID bindings ':' expr ':=' expr
|
|
*/
|
|
void parse_theorem() {
|
|
parse_def_core(false);
|
|
}
|
|
|
|
/** \brief Auxiliary method for parsing Variable and axiom declarations. */
|
|
void parse_variable_core(bool is_var) {
|
|
next();
|
|
name id = check_identifier_next("invalid variable/axiom declaration, identifier expected");
|
|
bindings_buffer bindings;
|
|
expr type;
|
|
if (curr_is_colon()) {
|
|
next();
|
|
auto p = m_elaborator(parse_expr());
|
|
check_no_metavar(p, "invalid declaration, type still contains metavariables after elaboration");
|
|
type = p.first;
|
|
} else {
|
|
mk_scope scope(*this);
|
|
parse_var_decl_bindings(bindings);
|
|
check_colon_next("invalid variable/axiom declaration, ':' expected");
|
|
expr type_body = parse_expr();
|
|
auto p = m_elaborator(mk_abstraction(false, bindings, type_body));
|
|
check_no_metavar(p, "invalid declaration, type still contains metavariables after elaboration");
|
|
type = p.first;
|
|
}
|
|
if (is_var)
|
|
m_env->add_var(id, type);
|
|
else
|
|
m_env->add_axiom(id, type);
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Assumed: " << id << endl;
|
|
register_implicit_arguments(id, bindings);
|
|
}
|
|
|
|
/** \brief Parse one of the two forms:
|
|
|
|
1) 'Variable' ID ':' type
|
|
|
|
2) 'Variable' ID bindings ':' type
|
|
*/
|
|
void parse_variable() {
|
|
parse_variable_core(true);
|
|
}
|
|
|
|
/** \brief Parse the form:
|
|
'Variables' ID+ ':' type
|
|
*/
|
|
void parse_variables() {
|
|
next();
|
|
mk_scope scope(*this);
|
|
bindings_buffer bindings;
|
|
parse_simple_bindings(bindings, false, false);
|
|
for (auto b : bindings) {
|
|
name const & id = std::get<1>(b);
|
|
if (m_env->find_object(id))
|
|
throw already_declared_exception(m_env, id);
|
|
}
|
|
for (auto b : bindings) {
|
|
name const & id = std::get<1>(b);
|
|
expr const & type = std::get<2>(b);
|
|
m_env->add_var(id, type);
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Assumed: " << id << endl;
|
|
}
|
|
}
|
|
|
|
/** \brief Parse one of the two forms:
|
|
|
|
1) 'Axiom' ID ':' type
|
|
|
|
2) 'Axiom' ID bindings ':' type
|
|
*/
|
|
void parse_axiom() {
|
|
parse_variable_core(false);
|
|
}
|
|
|
|
/** \brief Parse 'Eval' expr */
|
|
void parse_eval() {
|
|
next();
|
|
expr v = m_elaborator(parse_expr()).first;
|
|
normalizer norm(m_env);
|
|
expr r = norm(v, context(), true);
|
|
regular(m_io_state) << r << endl;
|
|
}
|
|
|
|
/** \brief Return true iff \c obj is an object that should be ignored by the Show command */
|
|
bool is_hidden_object(object const & obj) const {
|
|
return obj.is_definition() && is_explicit(m_env, obj.get_name());
|
|
}
|
|
|
|
/** \brief Parse
|
|
'Show' expr
|
|
'Show' Environment [num]
|
|
'Show' Environment all
|
|
'Show' Options
|
|
*/
|
|
void parse_show() {
|
|
next();
|
|
if (curr() == scanner::token::CommandId) {
|
|
name opt_id = curr_name();
|
|
next();
|
|
if (opt_id == g_env_kwd) {
|
|
unsigned beg = get_initial_size(m_env);
|
|
unsigned end = m_env->get_num_objects(false);
|
|
unsigned i;
|
|
if (curr_is_nat()) {
|
|
i = parse_unsigned("invalid argument, value does not fit in a machine integer");
|
|
} else if (curr_is_identifier() && curr_name() == "all") {
|
|
next();
|
|
i = std::numeric_limits<unsigned>::max();
|
|
beg = 0;
|
|
} else {
|
|
i = std::numeric_limits<unsigned>::max();
|
|
}
|
|
unsigned it = end;
|
|
while (it != beg && i != 0) {
|
|
--it;
|
|
if (!is_hidden_object(m_env->get_object(it, false)))
|
|
--i;
|
|
}
|
|
for (; it != end; ++it) {
|
|
auto obj = m_env->get_object(it, false);
|
|
if (!is_hidden_object(obj))
|
|
regular(m_io_state) << obj << endl;
|
|
}
|
|
} else if (opt_id == g_options_kwd) {
|
|
regular(m_io_state) << pp(m_io_state.get_options()) << endl;
|
|
} else {
|
|
throw parser_error("invalid Show command, expression, 'Options' or 'Environment' expected", m_last_cmd_pos);
|
|
}
|
|
} else {
|
|
expr v = m_elaborator(parse_expr()).first;
|
|
regular(m_io_state) << v << endl;
|
|
}
|
|
}
|
|
|
|
/** \brief Parse 'Check' expr */
|
|
void parse_check() {
|
|
next();
|
|
auto p = m_elaborator(parse_expr());
|
|
check_no_metavar(p, "invalid expression, it still contains metavariables after elaboration");
|
|
expr v = p.first;
|
|
expr t = type_check(v, m_env);
|
|
formatter fmt = m_io_state.get_formatter();
|
|
options opts = m_io_state.get_options();
|
|
unsigned indent = get_pp_indent(opts);
|
|
format r = group(format{fmt(v, opts), space(), colon(), nest(indent, compose(line(), fmt(t, opts)))});
|
|
regular(m_io_state) << mk_pair(r, opts) << endl;
|
|
}
|
|
|
|
/** \brief Return the (optional) precedence of a user-defined operator. */
|
|
unsigned parse_precedence() {
|
|
if (curr_is_nat()) {
|
|
return parse_unsigned("invalid operator definition, precedence does not fit in a machine integer");
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/** \brief Throw an error if the current token is not an identifier. If it is, move to next token. */
|
|
name parse_op_id() {
|
|
return check_identifier_next("invalid operator definition, identifier expected");
|
|
}
|
|
|
|
/**
|
|
\brief Parse prefix/postfix/infix/infixl/infixr user operator
|
|
definitions. These definitions have the form:
|
|
|
|
- fixity [Num] ID ':' ID
|
|
*/
|
|
void parse_op(fixity fx) {
|
|
next();
|
|
unsigned prec = parse_precedence();
|
|
name op_id = parse_op_id();
|
|
check_colon_next("invalid operator definition, ':' expected");
|
|
name name_id = check_identifier_next("invalid operator definition, identifier expected");
|
|
expr d = mk_constant(name_id);
|
|
switch (fx) {
|
|
case fixity::Infix: add_infix(m_env, m_io_state, op_id, prec, d); break;
|
|
case fixity::Infixl: add_infixl(m_env, m_io_state, op_id, prec, d); break;
|
|
case fixity::Infixr: add_infixr(m_env, m_io_state, op_id, prec, d); break;
|
|
default: lean_unreachable(); // LCOV_EXCL_LINE
|
|
}
|
|
}
|
|
|
|
/**
|
|
\brief Parse notation declaration unified format
|
|
|
|
'Notation' [Num] parts ':' ID
|
|
*/
|
|
void parse_notation_decl() {
|
|
auto p = pos();
|
|
next();
|
|
unsigned prec = parse_precedence();
|
|
bool first = true;
|
|
bool prev_placeholder = false;
|
|
bool first_placeholder = false;
|
|
buffer<name> parts;
|
|
while (true) {
|
|
if (first) {
|
|
if (curr_is_placeholder()) {
|
|
prev_placeholder = true;
|
|
first_placeholder = true;
|
|
next();
|
|
} else {
|
|
parts.push_back(check_identifier_next("invalid notation declaration, identifier or '_' expected"));
|
|
prev_placeholder = false;
|
|
first_placeholder = false;
|
|
}
|
|
first = false;
|
|
} else {
|
|
if (curr_is_colon()) {
|
|
next();
|
|
if (parts.size() == 0) {
|
|
throw parser_error("invalid notation declaration, it must have at least one identifier", p);
|
|
}
|
|
name name_id = check_identifier_next("invalid notation declaration, identifier expected");
|
|
expr d = mk_constant(name_id);
|
|
if (parts.size() == 1) {
|
|
if (first_placeholder && prev_placeholder) {
|
|
// infix: _ ID _
|
|
add_infix(m_env, m_io_state, parts[0], prec, d);
|
|
} else if (first_placeholder) {
|
|
// postfix: _ ID
|
|
add_postfix(m_env, m_io_state, parts[0], prec, d);
|
|
} else if (prev_placeholder) {
|
|
// prefix: ID _
|
|
add_prefix(m_env, m_io_state, parts[0], prec, d);
|
|
} else {
|
|
throw parser_error("invalid notation declaration, at least one placeholder expected", p);
|
|
}
|
|
} else {
|
|
if (first_placeholder && prev_placeholder) {
|
|
// mixfixo: _ ID ... ID _
|
|
add_mixfixo(m_env, m_io_state, parts.size(), parts.data(), prec, d);
|
|
} else if (first_placeholder) {
|
|
// mixfixr: _ ID ... ID
|
|
add_mixfixr(m_env, m_io_state, parts.size(), parts.data(), prec, d);
|
|
} else if (prev_placeholder) {
|
|
// mixfixl: ID _ ... ID _
|
|
add_mixfixl(m_env, m_io_state, parts.size(), parts.data(), prec, d);
|
|
} else {
|
|
// mixfixc: ID _ ... _ ID
|
|
add_mixfixc(m_env, m_io_state, parts.size(), parts.data(), prec, d);
|
|
}
|
|
}
|
|
return;
|
|
} else {
|
|
if (prev_placeholder) {
|
|
parts.push_back(check_identifier_next("invalid notation declaration, identifier or ':' expected"));
|
|
prev_placeholder = false;
|
|
} else {
|
|
check_placeholder_next("invalid notation declaration, '_' or ':' expected");
|
|
prev_placeholder = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/** Parse 'Echo' [string] */
|
|
void parse_echo() {
|
|
next();
|
|
std::string msg = check_string_next("invalid echo command, string expected");
|
|
regular(m_io_state) << msg << endl;
|
|
}
|
|
|
|
/** Parse 'SetOption' [id] [value] */
|
|
void parse_set() {
|
|
next();
|
|
auto id_pos = pos();
|
|
name id = check_identifier_next("invalid set options, identifier (i.e., option name) expected");
|
|
auto decl_it = get_option_declarations().find(id);
|
|
if (decl_it == get_option_declarations().end()) {
|
|
// add "lean" prefix
|
|
name lean_id = name("lean") + id;
|
|
decl_it = get_option_declarations().find(lean_id);
|
|
if (decl_it == get_option_declarations().end()) {
|
|
throw parser_error(sstream() << "unknown option '" << id << "', type 'Help Options.' for list of available options", id_pos);
|
|
} else {
|
|
id = lean_id;
|
|
}
|
|
}
|
|
option_kind k = decl_it->second.kind();
|
|
switch (curr()) {
|
|
case scanner::token::Id:
|
|
if (k != BoolOption)
|
|
throw parser_error(sstream() << "invalid option value, given option is not Boolean", pos());
|
|
if (curr_name() == "true")
|
|
m_io_state.set_option(id, true);
|
|
else if (curr_name() == "false")
|
|
m_io_state.set_option(id, false);
|
|
else
|
|
throw parser_error("invalid Boolean option value, 'true' or 'false' expected", pos());
|
|
next();
|
|
break;
|
|
case scanner::token::StringVal:
|
|
if (k != StringOption)
|
|
throw parser_error("invalid option value, given option is not a string", pos());
|
|
m_io_state.set_option(id, curr_string());
|
|
next();
|
|
break;
|
|
case scanner::token::NatVal:
|
|
if (k != IntOption && k != UnsignedOption)
|
|
throw parser_error("invalid option value, given option is not an integer", pos());
|
|
m_io_state.set_option(id, parse_unsigned("invalid option value, value does not fit in a machine integer"));
|
|
break;
|
|
case scanner::token::DecimalVal:
|
|
if (k != DoubleOption)
|
|
throw parser_error("invalid option value, given option is not floating point value", pos());
|
|
m_io_state.set_option(id, parse_double());
|
|
break;
|
|
default:
|
|
throw parser_error("invalid option value, 'true', 'false', string, integer or decimal value expected", pos());
|
|
}
|
|
updt_options();
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Set: " << id << endl;
|
|
}
|
|
|
|
void import_lean_file(std::string const & fname) {
|
|
std::ifstream in(fname);
|
|
if (!in.is_open())
|
|
throw parser_error(sstream() << "invalid import command, failed to open file '" << fname << "'", m_last_cmd_pos);
|
|
if (!m_env->mark_imported(fname.c_str())) {
|
|
// module already imported
|
|
return;
|
|
}
|
|
try {
|
|
script_state state; // Empty state object for the imported module
|
|
parser import_parser(m_env, m_io_state, in, &state, true /* use exceptions */, false /* not interactive */);
|
|
import_parser();
|
|
} catch (interrupted &) {
|
|
throw;
|
|
} catch (exception &) {
|
|
throw parser_error(sstream() << "failed to import file '" << fname << "'", m_last_cmd_pos);
|
|
}
|
|
}
|
|
|
|
void parse_import() {
|
|
next();
|
|
std::string fname;
|
|
if (curr_is_identifier()) {
|
|
fname = name_to_file(curr_name());
|
|
next();
|
|
} else {
|
|
fname = check_string_next("invalid import command, string (i.e., file name) or identifier expected");
|
|
}
|
|
fname = find_file(fname);
|
|
if (is_lean_file(fname)) {
|
|
import_lean_file(fname);
|
|
} else if (is_lua_file(fname)) {
|
|
if (!m_script_state)
|
|
throw parser_error(sstream() << "failed to import Lua file '" << fname << "', parser does not have an intepreter", m_last_cmd_pos);
|
|
m_script_state->import_explicit(fname.c_str());
|
|
} else {
|
|
// assume is a Lean file
|
|
import_lean_file(fname);
|
|
}
|
|
}
|
|
|
|
void parse_help() {
|
|
next();
|
|
if (curr() == scanner::token::CommandId) {
|
|
name opt_id = curr_name();
|
|
next();
|
|
if (opt_id == g_options_kwd) {
|
|
regular(m_io_state) << "Available options:" << endl;
|
|
for (auto p : get_option_declarations()) {
|
|
auto opt = p.second;
|
|
regular(m_io_state) << " " << opt.get_name() << " (" << opt.kind() << ") "
|
|
<< opt.get_description() << " (default: " << opt.get_default_value() << ")" << endl;
|
|
}
|
|
} else {
|
|
throw parser_error("invalid help command", m_last_cmd_pos);
|
|
}
|
|
} else {
|
|
regular(m_io_state) << "Available commands:" << endl
|
|
<< " Axiom [id] : [type] assert/postulate a new axiom" << endl
|
|
<< " Check [expr] type check the given expression" << endl
|
|
<< " Definition [id] : [type] := [expr] define a new element" << endl
|
|
<< " Echo [string] display the given string" << endl
|
|
<< " EndScope end the current scope and import its objects into the parent scope" << endl
|
|
<< " Eval [expr] evaluate the given expression" << endl
|
|
<< " Exit exit" << endl
|
|
<< " Help display this message" << endl
|
|
<< " Help Options display available options" << endl
|
|
<< " Help Notation describe commands for defining infix, mixfix, postfix operators" << endl
|
|
<< " Import [string] load the given file" << endl
|
|
<< " Push create a scope (it is just an alias for the command Scope)" << endl
|
|
<< " Pop discard the current scope" << endl
|
|
<< " Scope create a scope" << endl
|
|
<< " SetOption [id] [value] set option [id] with value [value]" << endl
|
|
<< " Show [expr] pretty print the given expression" << endl
|
|
<< " Show Options show current the set of assigned options" << endl
|
|
<< " Show Environment show objects in the environment, if [Num] provided, then show only the last [Num] objects" << endl
|
|
<< " Show Environment [num] show the last num objects in the environment" << endl
|
|
<< " Theorem [id] : [type] := [expr] define a new theorem" << endl
|
|
<< " Variable [id] : [type] declare/postulate an element of the given type" << endl
|
|
<< " Universe [id] [level] declare a new universe variable that is >= the given level" << endl;
|
|
#if !defined(LEAN_WINDOWS)
|
|
regular(m_io_state) << "Type Ctrl-D to exit" << endl;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/** \brief Parse 'Coercion' expr */
|
|
void parse_coercion() {
|
|
next();
|
|
expr coercion = parse_expr();
|
|
add_coercion(m_env, coercion);
|
|
if (m_verbose)
|
|
regular(m_io_state) << " Coercion " << coercion << endl;
|
|
}
|
|
|
|
void reset_env(environment env) {
|
|
m_env = env;
|
|
m_elaborator.reset(env);
|
|
m_io_state.set_formatter(mk_pp_formatter(env));
|
|
}
|
|
|
|
void parse_scope() {
|
|
next();
|
|
reset_env(m_env->mk_child());
|
|
}
|
|
|
|
void parse_pop() {
|
|
next();
|
|
if (!m_env->has_parent())
|
|
throw parser_error("main scope cannot be removed", m_last_cmd_pos);
|
|
reset_env(m_env->parent());
|
|
}
|
|
|
|
void parse_end_scope() {
|
|
next();
|
|
if (!m_env->has_parent())
|
|
throw parser_error("main scope cannot be removed", m_last_cmd_pos);
|
|
auto new_objects = export_local_objects(m_env);
|
|
reset_env(m_env->parent());
|
|
for (auto const & obj : new_objects) {
|
|
if (obj.is_theorem())
|
|
m_env->add_theorem(obj.get_name(), obj.get_type(), obj.get_value());
|
|
else
|
|
m_env->add_definition(obj.get_name(), obj.get_type(), obj.get_value(), obj.is_opaque());
|
|
}
|
|
}
|
|
|
|
void parse_cmd_macro(name cmd_id, pos_info const & p) {
|
|
lean_assert(m_cmd_macros && m_cmd_macros->find(cmd_id) != m_cmd_macros->end());
|
|
next();
|
|
auto m = m_cmd_macros->find(cmd_id)->second;
|
|
macro_arg_stack args;
|
|
parse_macro(m.m_arg_kinds, m.m_fn, m.m_precedence, args, p);
|
|
}
|
|
|
|
/** \brief Parse a Lean command. */
|
|
bool parse_command() {
|
|
m_elaborator.clear();
|
|
m_expr_pos_info.clear();
|
|
m_tactic_hints.clear();
|
|
m_last_cmd_pos = pos();
|
|
name const & cmd_id = curr_name();
|
|
if (cmd_id == g_definition_kwd) {
|
|
parse_definition();
|
|
} else if (cmd_id == g_variable_kwd) {
|
|
parse_variable();
|
|
} else if (cmd_id == g_variables_kwd) {
|
|
parse_variables();
|
|
} else if (cmd_id == g_theorem_kwd) {
|
|
parse_theorem();
|
|
} else if (cmd_id == g_axiom_kwd) {
|
|
parse_axiom();
|
|
} else if (cmd_id == g_eval_kwd) {
|
|
parse_eval();
|
|
} else if (cmd_id == g_show_kwd) {
|
|
parse_show();
|
|
} else if (cmd_id == g_check_kwd) {
|
|
parse_check();
|
|
} else if (cmd_id == g_infix_kwd) {
|
|
parse_op(fixity::Infix);
|
|
} else if (cmd_id == g_infixl_kwd) {
|
|
parse_op(fixity::Infixl);
|
|
} else if (cmd_id == g_infixr_kwd) {
|
|
parse_op(fixity::Infixr);
|
|
} else if (cmd_id == g_notation_kwd) {
|
|
parse_notation_decl();
|
|
} else if (cmd_id == g_echo_kwd) {
|
|
parse_echo();
|
|
} else if (cmd_id == g_set_kwd) {
|
|
parse_set();
|
|
} else if (cmd_id == g_import_kwd) {
|
|
parse_import();
|
|
} else if (cmd_id == g_help_kwd) {
|
|
parse_help();
|
|
} else if (cmd_id == g_coercion_kwd) {
|
|
parse_coercion();
|
|
} else if (cmd_id == g_exit_kwd) {
|
|
next();
|
|
return false;
|
|
} else if (cmd_id == g_push_kwd || cmd_id == g_scope_kwd) {
|
|
parse_scope();
|
|
} else if (cmd_id == g_pop_kwd) {
|
|
parse_pop();
|
|
} else if (cmd_id == g_end_scope_kwd) {
|
|
parse_end_scope();
|
|
} else if (m_cmd_macros && m_cmd_macros->find(cmd_id) != m_cmd_macros->end()) {
|
|
parse_cmd_macro(cmd_id, m_last_cmd_pos);
|
|
} else {
|
|
next();
|
|
throw parser_error(sstream() << "invalid command '" << cmd_id << "'", m_last_cmd_pos);
|
|
}
|
|
return true;
|
|
}
|
|
/*@}*/
|
|
|
|
void updt_options() {
|
|
m_verbose = get_parser_verbose(m_io_state.get_options());
|
|
m_show_errors = get_parser_show_errors(m_io_state.get_options());
|
|
}
|
|
|
|
/**
|
|
\brief Parse a block of Lua code. If as_expr is true, then
|
|
it appends the string "return " in front of the script.
|
|
*/
|
|
void parse_script(bool as_expr = false) {
|
|
m_last_script_pos = mk_pair(m_scanner.get_script_block_line(), m_scanner.get_script_block_pos());
|
|
if (!m_script_state)
|
|
throw exception("failed to execute Lua script, parser does not have a Lua interpreter");
|
|
std::string script_code = m_scanner.get_str_val();
|
|
if (as_expr) {
|
|
script_code = "return " + script_code;
|
|
}
|
|
next();
|
|
using_script([&](lua_State * L) {
|
|
dostring(L, script_code.c_str());
|
|
});
|
|
}
|
|
|
|
void parse_script_expr() { return parse_script(true); }
|
|
|
|
public:
|
|
imp(environment const & env, io_state const & st, std::istream & in, script_state * S, bool use_exceptions, bool interactive):
|
|
m_env(env),
|
|
m_io_state(st),
|
|
m_scanner(in),
|
|
m_elaborator(env),
|
|
m_use_exceptions(use_exceptions),
|
|
m_interactive(interactive),
|
|
m_script_state(S),
|
|
m_set_parser(m_script_state, this) {
|
|
m_check_identifiers = true;
|
|
updt_options();
|
|
m_found_errors = false;
|
|
m_num_local_decls = 0;
|
|
m_scanner.set_command_keywords(g_command_keywords);
|
|
if (m_script_state) {
|
|
m_script_state->apply([&](lua_State * L) {
|
|
m_expr_macros = &get_expr_macros(L);
|
|
m_tactic_macros = &get_tactic_macros(L);
|
|
m_cmd_macros = &get_cmd_macros(L);
|
|
for (auto const & p : *m_cmd_macros) {
|
|
m_scanner.add_command_keyword(p.first);
|
|
}
|
|
});
|
|
} else {
|
|
m_expr_macros = nullptr;
|
|
m_tactic_macros = nullptr;
|
|
m_cmd_macros = nullptr;
|
|
}
|
|
scan();
|
|
}
|
|
|
|
static void show_prompt(bool interactive, io_state const & ios) {
|
|
if (interactive) {
|
|
regular(ios) << "# ";
|
|
regular(ios).flush();
|
|
}
|
|
}
|
|
|
|
void show_prompt() {
|
|
show_prompt(m_interactive, m_io_state);
|
|
}
|
|
|
|
void show_tactic_prompt() {
|
|
if (m_interactive) {
|
|
regular(m_io_state) << "## ";
|
|
regular(m_io_state).flush();
|
|
}
|
|
}
|
|
|
|
/** \brief Parse a sequence of commands. This method also perform error management. */
|
|
bool parse_commands() {
|
|
bool done = false;
|
|
while (!done) {
|
|
protected_call([&]() {
|
|
check_interrupted();
|
|
switch (curr()) {
|
|
case scanner::token::CommandId: if (!parse_command()) done = true; break;
|
|
case scanner::token::ScriptBlock: parse_script(); break;
|
|
case scanner::token::Period: show_prompt(); next(); break;
|
|
case scanner::token::Eof: done = true; break;
|
|
default:
|
|
throw parser_error("Command expected", pos());
|
|
}
|
|
}, [&]() {
|
|
// Keep consuming tokens until we find a Command or End-of-file
|
|
show_prompt();
|
|
while (curr() != scanner::token::CommandId && curr() != scanner::token::Eof && curr() != scanner::token::Period)
|
|
next();
|
|
if (curr_is_period())
|
|
next();
|
|
});
|
|
}
|
|
return !m_found_errors;
|
|
}
|
|
|
|
/** \brief Parse an expression. */
|
|
expr parse_expr_main() {
|
|
try {
|
|
auto p = m_elaborator(parse_expr());
|
|
check_no_metavar(p, "invalid expression, it still contains metavariables after elaboration");
|
|
return p.first;
|
|
} catch (parser_error & ex) {
|
|
throw parser_exception(ex.what(), ex.m_pos.first, ex.m_pos.second);
|
|
}
|
|
}
|
|
};
|
|
|
|
parser::parser(environment const & env, io_state const & ios, std::istream & in, script_state * S, bool use_exceptions, bool interactive) {
|
|
parser::imp::show_prompt(interactive, ios);
|
|
m_ptr.reset(new imp(env, ios, in, S, use_exceptions, interactive));
|
|
}
|
|
|
|
parser::parser(environment const & env, std::istream & in, script_state * S, bool use_exceptions, bool interactive):
|
|
parser(env, io_state(), in, S, use_exceptions, interactive) {
|
|
m_ptr->m_io_state.set_formatter(mk_pp_formatter(m_ptr->m_env));
|
|
}
|
|
|
|
parser::~parser() {
|
|
}
|
|
|
|
bool parser::operator()() {
|
|
return m_ptr->parse_commands();
|
|
}
|
|
|
|
expr parser::parse_expr() {
|
|
return m_ptr->parse_expr_main();
|
|
}
|
|
|
|
io_state parser::get_io_state() const {
|
|
return m_ptr->m_io_state;
|
|
}
|
|
|
|
#ifdef LEAN_USE_READLINE
|
|
// Hackish wrapper for implementing a streambuf on top of the readline library
|
|
class readline_streambuf : public std::streambuf {
|
|
std::string m_buffer;
|
|
std::streamsize m_curr;
|
|
std::streamsize m_high;
|
|
protected:
|
|
virtual int_type underflow() {
|
|
while (m_curr == m_high) {
|
|
char * line = readline("");
|
|
if (!line) {
|
|
// EOF received
|
|
return traits_type::eof();
|
|
} else if (strlen(line) == 0) {
|
|
// ignore blank line
|
|
m_buffer.push_back('\n');
|
|
free(line);
|
|
} else {
|
|
add_history(line);
|
|
m_buffer += line;
|
|
m_buffer.push_back('\n');
|
|
free(line);
|
|
m_high = m_buffer.size();
|
|
}
|
|
}
|
|
|
|
return traits_type::to_int_type(m_buffer[m_curr]);
|
|
}
|
|
|
|
virtual int_type uflow() {
|
|
int_type r = underflow();
|
|
if (r != traits_type::eof())
|
|
m_curr++;
|
|
return r;
|
|
}
|
|
|
|
virtual int_type pbackfail(int_type c) {
|
|
if (m_curr == 0)
|
|
return traits_type::eof();
|
|
m_curr--;
|
|
if (c != traits_type::eof())
|
|
m_buffer[m_curr] = c;
|
|
return traits_type::eof() + 1; // something different from eof()
|
|
}
|
|
|
|
virtual std::streamsize showmanyc() {
|
|
return m_high - m_curr;
|
|
}
|
|
|
|
public:
|
|
readline_streambuf():
|
|
m_curr(0), m_high(0) {
|
|
setbuf(0, 0);
|
|
}
|
|
};
|
|
|
|
struct readline_config {
|
|
FILE * m_devnull;
|
|
readline_config() {
|
|
// By default, the readline library echos the input in the standard output.
|
|
// We can change this behavior by setting rl_outstream to /dev/null
|
|
m_devnull = fopen("/dev/null", "a");
|
|
rl_outstream = m_devnull;
|
|
}
|
|
~readline_config() {
|
|
fclose(m_devnull);
|
|
}
|
|
};
|
|
static readline_config g_readline_config;
|
|
#endif
|
|
|
|
shell::shell(environment const & env, io_state const & ios, script_state * S):m_env(env), m_io_state(ios), m_script_state(S) {
|
|
}
|
|
|
|
shell::shell(environment const & env, script_state * S):m_env(env), m_io_state(), m_script_state(S) {
|
|
m_io_state.set_formatter(mk_pp_formatter(m_env));
|
|
}
|
|
|
|
shell::~shell() {
|
|
}
|
|
|
|
bool shell::operator()() {
|
|
#ifdef LEAN_USE_READLINE
|
|
readline_streambuf buf;
|
|
std::istream is(&buf);
|
|
parser p(m_env, m_io_state, is, m_script_state, false, true);
|
|
#else
|
|
parser p(m_env, m_io_state, std::cin, m_script_state, false, true);
|
|
#endif
|
|
return p();
|
|
}
|
|
|
|
bool parse_commands(environment const & env, io_state & ios, std::istream & in, script_state * S, bool use_exceptions, bool interactive) {
|
|
parser p(env, ios, in, S, use_exceptions, interactive);
|
|
bool r = p();
|
|
ios = p.get_io_state();
|
|
return r;
|
|
}
|
|
|
|
expr parse_expr(environment const & env, io_state & ios, std::istream & in, script_state * S, bool use_exceptions) {
|
|
parser p(env, ios, in, S, use_exceptions);
|
|
expr r = p.parse_expr();
|
|
ios = p.get_io_state();
|
|
return r;
|
|
}
|
|
|
|
static char g_parser_expr_macros_key;
|
|
static char g_parser_tactic_macros_key;
|
|
static char g_parser_cmd_macros_key;
|
|
DECL_UDATA(macros)
|
|
|
|
macros & get_macros(lua_State * L, char * key) {
|
|
lua_pushlightuserdata(L, static_cast<void *>(key));
|
|
lua_gettable(L, LUA_REGISTRYINDEX);
|
|
if (lua_isnil(L, -1)) {
|
|
lua_pop(L, 1);
|
|
lua_pushlightuserdata(L, static_cast<void *>(key));
|
|
push_macros(L, macros());
|
|
lua_settable(L, LUA_REGISTRYINDEX);
|
|
lua_pushlightuserdata(L, static_cast<void *>(key));
|
|
lua_gettable(L, LUA_REGISTRYINDEX);
|
|
}
|
|
lean_assert(is_macros(L, -1));
|
|
macros & r = to_macros(L, -1);
|
|
lua_pop(L, 1);
|
|
return r;
|
|
}
|
|
|
|
macros & get_expr_macros(lua_State * L) { return get_macros(L, &g_parser_expr_macros_key); }
|
|
macros & get_tactic_macros(lua_State * L) { return get_macros(L, &g_parser_tactic_macros_key); }
|
|
macros & get_cmd_macros(lua_State * L) { return get_macros(L, &g_parser_cmd_macros_key); }
|
|
|
|
void mk_macro(lua_State * L, macros & mtable) {
|
|
int nargs = lua_gettop(L);
|
|
name macro_name = to_name_ext(L, 1);
|
|
unsigned prec = nargs == 4 ? lua_tointeger(L, 4) : g_app_precedence;
|
|
luaL_checktype(L, 3, LUA_TFUNCTION); // user-fun
|
|
buffer<macro_arg_kind> arg_kind_buffer;
|
|
int n = objlen(L, 2);
|
|
for (int i = 1; i <= n; i++) {
|
|
lua_rawgeti(L, 2, i);
|
|
arg_kind_buffer.push_back(static_cast<macro_arg_kind>(luaL_checkinteger(L, -1)));
|
|
lua_pop(L, 1);
|
|
}
|
|
list<macro_arg_kind> arg_kinds = to_list(arg_kind_buffer.begin(), arg_kind_buffer.end());
|
|
mtable.insert(mk_pair(macro_name, macro(arg_kinds, luaref(L, 3), prec)));
|
|
}
|
|
|
|
int mk_macro(lua_State * L) {
|
|
mk_macro(L, get_expr_macros(L));
|
|
return 0;
|
|
}
|
|
|
|
int mk_cmd_macro(lua_State * L) {
|
|
mk_macro(L, get_cmd_macros(L));
|
|
name macro_name = to_name_ext(L, 1);
|
|
parser::imp * ptr = get_parser(L);
|
|
if (!ptr)
|
|
throw exception("invalid cmd_macro, it is not in the context of a Lean parser");
|
|
// Make sure macro_name is a CommandId.
|
|
ptr->m_scanner.add_command_keyword(macro_name);
|
|
if (ptr->m_curr == scanner::token::Id && ptr->curr_name() == macro_name) {
|
|
ptr->m_curr = scanner::token::CommandId;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mk_tactic_macro(lua_State * L) {
|
|
mk_macro(L, get_tactic_macros(L));
|
|
return 0;
|
|
}
|
|
|
|
static const struct luaL_Reg macros_m[] = {
|
|
{"__gc", macros_gc}, // never throws
|
|
{0, 0}
|
|
};
|
|
|
|
void open_macros(lua_State * L) {
|
|
luaL_newmetatable(L, macros_mt);
|
|
lua_pushvalue(L, -1);
|
|
lua_setfield(L, -2, "__index");
|
|
setfuncs(L, macros_m, 0);
|
|
SET_GLOBAL_FUN(macros_pred, "is_macros");
|
|
SET_GLOBAL_FUN(mk_macro, "macro");
|
|
SET_GLOBAL_FUN(mk_cmd_macro, "cmd_macro");
|
|
SET_GLOBAL_FUN(mk_tactic_macro, "tactic_macro");
|
|
|
|
lua_newtable(L);
|
|
SET_ENUM("Expr", macro_arg_kind::Expr);
|
|
SET_ENUM("Exprs", macro_arg_kind::Exprs);
|
|
SET_ENUM("Bindings", macro_arg_kind::Bindings);
|
|
SET_ENUM("Id", macro_arg_kind::Id);
|
|
SET_ENUM("String", macro_arg_kind::String);
|
|
SET_ENUM("Int", macro_arg_kind::Int);
|
|
SET_ENUM("Comma", macro_arg_kind::Comma);
|
|
SET_ENUM("Assign", macro_arg_kind::Assign);
|
|
SET_ENUM("Tactic", macro_arg_kind::Tactic);
|
|
SET_ENUM("Tactics", macro_arg_kind::Tactics);
|
|
lua_setglobal(L, "macro_arg");
|
|
}
|
|
}
|