afdcf7cb71
ap_compose' is reversed, and is_trunc_equiv_closed and variants don't have a type class argument anymore
490 lines
18 KiB
Text
490 lines
18 KiB
Text
/-
|
||
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn
|
||
|
||
Functors which are equivalences or isomorphisms
|
||
-/
|
||
|
||
import .adjoint
|
||
|
||
open eq functor iso prod nat_trans is_equiv equiv is_trunc sigma.ops
|
||
|
||
namespace category
|
||
variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C}
|
||
|
||
structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F :=
|
||
mk' ::
|
||
(is_iso_unit : is_iso η)
|
||
(is_iso_counit : is_iso ε)
|
||
|
||
abbreviation inverse := @is_equivalence.G
|
||
postfix ⁻¹ := inverse
|
||
--a second notation for the inverse, which is not overloaded (there is no unicode superscript F)
|
||
postfix [parsing_only] `⁻¹ᴱ`:std.prec.max_plus := inverse
|
||
|
||
definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F)
|
||
|
||
structure equivalence (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_equivalence to_functor)
|
||
|
||
structure isomorphism (C D : Precategory) :=
|
||
(to_functor : C ⇒ D)
|
||
(struct : is_isomorphism to_functor)
|
||
|
||
structure weak_equivalence (C D : Precategory) :=
|
||
mk' :: (intermediate : Precategory)
|
||
(left_functor : intermediate ⇒ C)
|
||
(right_functor : intermediate ⇒ D)
|
||
[structl : is_weak_equivalence left_functor]
|
||
[structr : is_weak_equivalence right_functor]
|
||
|
||
infix ` ≃c `:25 := equivalence
|
||
infix ` ≅c `:25 := isomorphism
|
||
infix ` ≃w `:25 := weak_equivalence
|
||
|
||
attribute equivalence.struct isomorphism.struct [instance] [priority 1500]
|
||
attribute equivalence.to_functor isomorphism.to_functor [coercion]
|
||
|
||
definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) :=
|
||
!is_equivalence.is_iso_unit
|
||
|
||
definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) :=
|
||
!is_equivalence.is_iso_counit
|
||
|
||
definition iso_unit (F : C ⇒ D) [H : is_equivalence F] : F⁻¹ᴱ ∘f F ≅ 1 :=
|
||
(@(iso.mk _) !is_iso_unit)⁻¹ⁱ
|
||
|
||
definition iso_counit (F : C ⇒ D) [H : is_equivalence F] : F ∘f F⁻¹ᴱ ≅ 1 :=
|
||
@(iso.mk _) !is_iso_counit
|
||
|
||
definition split_essentially_surjective_of_is_equivalence [instance] (F : C ⇒ D)
|
||
[is_equivalence F] : split_essentially_surjective F :=
|
||
begin
|
||
intro d, fconstructor,
|
||
{ exact F⁻¹ d},
|
||
{ exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d}
|
||
end
|
||
|
||
end category
|
||
|
||
namespace category
|
||
section
|
||
parameters {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1)
|
||
|
||
private definition ηn : 1 ⟹ G ∘f F := to_inv η
|
||
private definition εn : F ∘f G ⟹ 1 := to_hom ε
|
||
|
||
private definition ηi (c : C) : G (F c) ≅ c := componentwise_iso η c
|
||
private definition εi (d : D) : F (G d) ≅ d := componentwise_iso ε d
|
||
|
||
private definition ηi' (c : C) : G (F c) ≅ c :=
|
||
to_fun_iso G (to_fun_iso F (ηi c)⁻¹ⁱ) ⬝i to_fun_iso G (εi (F c)) ⬝i ηi c
|
||
|
||
local attribute ηn εn ηi εi ηi' [reducible]
|
||
|
||
private theorem adj_η_natural {c c' : C} (f : hom c c')
|
||
: G (F f) ∘ to_inv (ηi' c) = to_inv (ηi' c') ∘ f :=
|
||
let ηi'_nat : G ∘f F ⟹ 1 :=
|
||
calc
|
||
G ∘f F ⟹ (G ∘f F) ∘f 1 : id_right_natural_rev (G ∘f F)
|
||
... ⟹ (G ∘f F) ∘f (G ∘f F) : (G ∘f F) ∘fn ηn
|
||
... ⟹ ((G ∘f F) ∘f G) ∘f F : assoc_natural (G ∘f F) G F
|
||
... ⟹ (G ∘f (F ∘f G)) ∘f F : assoc_natural_rev G F G ∘nf F
|
||
... ⟹ (G ∘f 1) ∘f F : (G ∘fn εn) ∘nf F
|
||
... ⟹ G ∘f F : id_right_natural G ∘nf F
|
||
... ⟹ 1 : to_hom η
|
||
in
|
||
begin
|
||
refine is_natural_inverse' (G ∘f F) functor.id ηi' ηi'_nat _ f,
|
||
intro c, esimp, rewrite [+id_left,id_right]
|
||
end
|
||
|
||
private theorem adjointify_adjH (c : C) :
|
||
to_hom (εi (F c)) ∘ F (to_hom (ηi' c))⁻¹ = id :=
|
||
begin
|
||
rewrite [respect_inv], apply comp_inverse_eq_of_eq_comp,
|
||
rewrite [id_left,↑ηi',+respect_comp,+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq,
|
||
rewrite [↑εi,-naturality_iso_id ε (F c)],
|
||
symmetry, exact naturality εn (F (to_hom (ηi c)))
|
||
end
|
||
|
||
private theorem adjointify_adjK (d : D) :
|
||
G (to_hom (εi d)) ∘ to_hom (ηi' (G d))⁻¹ⁱ = id :=
|
||
begin
|
||
apply comp_inverse_eq_of_eq_comp,
|
||
rewrite [id_left,↑ηi',+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq,
|
||
rewrite [↑ηi,-naturality_iso_id η (G d),↑εi,naturality_iso_id ε d],
|
||
exact naturality (to_hom η) (G (to_hom (εi d))),
|
||
end
|
||
|
||
parameter (G)
|
||
include η ε
|
||
definition is_equivalence.mk : is_equivalence F :=
|
||
begin
|
||
fapply is_equivalence.mk',
|
||
{ exact G},
|
||
{ fapply nat_trans.mk,
|
||
{ intro c, exact to_inv (ηi' c)},
|
||
{ intro c c' f, exact adj_η_natural f}},
|
||
{ exact εn},
|
||
{ exact adjointify_adjH},
|
||
{ exact adjointify_adjK},
|
||
{ exact @(is_natural_iso _) (λc, !is_iso_inverse)},
|
||
{ unfold εn, apply iso.struct, },
|
||
end
|
||
|
||
definition equivalence.MK : C ≃c D :=
|
||
equivalence.mk F is_equivalence.mk
|
||
end
|
||
|
||
section
|
||
parameters {C D : Precategory} (F : C ⇒ D)
|
||
[H₁ : fully_faithful F] [H₂ : split_essentially_surjective F]
|
||
|
||
include H₁ H₂
|
||
definition inverse_of_fully_faithful_of_split_essentially_surjective [constructor] : D ⇒ C :=
|
||
begin
|
||
fapply functor.mk,
|
||
{ exact λd, (H₂ d).1},
|
||
{ intro d d' g, apply (to_fun_hom F)⁻¹ᶠ, refine to_inv (H₂ d').2 ∘ g ∘ to_hom (H₂ d).2},
|
||
{ intro d, apply inv_eq_of_eq, rewrite [id_left, respect_id, to_left_inverse]},
|
||
{ intros d₁ d₂ d₃ g f, apply inv_eq_of_eq,
|
||
rewrite [respect_comp, +right_inv (to_fun_hom F), +assoc', comp_inverse_cancel_left]}
|
||
end
|
||
|
||
definition is_equivalence_of_fully_faithful_of_split_essentially_surjective [constructor]
|
||
: is_equivalence F :=
|
||
begin
|
||
fapply is_equivalence.mk,
|
||
{ exact inverse_of_fully_faithful_of_split_essentially_surjective},
|
||
{ fapply natural_iso.mk',
|
||
{ intro c, esimp, apply reflect_iso F, exact (H₂ (F c)).2},
|
||
intro c c' f, esimp, apply eq_of_fn_eq_fn' (to_fun_hom F),
|
||
rewrite [+respect_comp, +right_inv (to_fun_hom F), comp_inverse_cancel_left]},
|
||
{ fapply natural_iso.mk',
|
||
{ intro c, esimp, exact (H₂ c).2},
|
||
intro c c' f, esimp, rewrite [right_inv (to_fun_hom F), comp_inverse_cancel_left]}
|
||
end
|
||
|
||
end
|
||
|
||
variables {C D E : Precategory} {F : C ⇒ D}
|
||
|
||
--TODO: add variants
|
||
definition unit_eq_counit_inv (F : C ⇒ D) [H : is_equivalence F] (c : C) :
|
||
to_fun_hom F (natural_map (unit F) c) =
|
||
@(is_iso.inverse (counit F (F c))) (@(componentwise_is_iso (counit F)) !is_iso_counit (F c)) :=
|
||
begin
|
||
apply eq_inverse_of_comp_eq_id, apply counit_unit_eq
|
||
end
|
||
|
||
definition fully_faithful_of_is_equivalence [instance] [constructor] (F : C ⇒ D)
|
||
[H : is_equivalence F] : fully_faithful F :=
|
||
begin
|
||
intro c c',
|
||
fapply adjointify,
|
||
{ intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c},
|
||
{ intro g, rewrite [+respect_comp,▸*],
|
||
xrewrite [natural_map_inverse (unit F) c', respect_inv'],
|
||
apply inverse_comp_eq_of_eq_comp,
|
||
rewrite [+unit_eq_counit_inv],
|
||
esimp, exact naturality (counit F)⁻¹ _},
|
||
{ intro f, xrewrite [▸*,natural_map_inverse (unit F) c'], apply inverse_comp_eq_of_eq_comp,
|
||
apply naturality (unit F)},
|
||
end
|
||
|
||
definition is_isomorphism.mk [constructor] {F : C ⇒ D} (G : D ⇒ C)
|
||
(p : G ∘f F = 1) (q : F ∘f G = 1) : is_isomorphism F :=
|
||
begin
|
||
constructor,
|
||
{ apply fully_faithful_of_is_equivalence, fapply is_equivalence.mk,
|
||
{ exact G},
|
||
{ apply iso_of_eq p},
|
||
{ apply iso_of_eq q}},
|
||
{ fapply adjointify,
|
||
{ exact G},
|
||
{ exact ap010 to_fun_ob q},
|
||
{ exact ap010 to_fun_ob p}}
|
||
end
|
||
|
||
definition isomorphism.MK [constructor] (F : C ⇒ D) (G : D ⇒ C)
|
||
(p : G ∘f F = 1) (q : F ∘f G = 1) : C ≅c D :=
|
||
isomorphism.mk F (is_isomorphism.mk G p q)
|
||
|
||
definition is_equiv_ob_of_is_isomorphism [instance] [unfold 4] (F : C ⇒ D)
|
||
[H : is_isomorphism F] : is_equiv (to_fun_ob F) :=
|
||
pr2 H
|
||
|
||
definition fully_faithful_of_is_isomorphism [unfold 4] (F : C ⇒ D)
|
||
[H : is_isomorphism F] : fully_faithful F :=
|
||
pr1 H
|
||
|
||
section
|
||
local attribute fully_faithful_of_is_isomorphism [instance]
|
||
|
||
definition strict_inverse [constructor] (F : C ⇒ D) [H : is_isomorphism F] : D ⇒ C :=
|
||
begin
|
||
fapply functor.mk,
|
||
{ intro d, exact (to_fun_ob F)⁻¹ᶠ d},
|
||
{ intro d d' g, exact (to_fun_hom F)⁻¹ᶠ (inv_of_eq !right_inv ∘ g ∘ hom_of_eq !right_inv)},
|
||
{ intro d, apply inv_eq_of_eq, rewrite [respect_id,id_left], apply left_inverse},
|
||
{ intro d₁ d₂ d₃ g₂ g₁, apply inv_eq_of_eq, rewrite [respect_comp F,+right_inv (to_fun_hom F)],
|
||
rewrite [+assoc], esimp, /-apply ap (λx, (x ∘ _) ∘ _), FAILS-/ refine ap (λx, (x ∘ _) ∘ _) _,
|
||
refine !id_right⁻¹ ⬝ _, rewrite [▸*,-+assoc], refine ap (λx, _ ∘ _ ∘ x) _,
|
||
exact !right_inverse⁻¹},
|
||
end
|
||
|
||
postfix /-[parsing-only]-/ `⁻¹ˢ`:std.prec.max_plus := strict_inverse
|
||
|
||
definition strict_right_inverse (F : C ⇒ D) [H : is_isomorphism F] : F ∘f F⁻¹ˢ = 1 :=
|
||
begin
|
||
fapply functor_eq,
|
||
{ intro d, esimp, apply right_inv},
|
||
{ intro d d' g,
|
||
rewrite [▸*, right_inv (to_fun_hom F), +assoc],
|
||
rewrite [↑[hom_of_eq,inv_of_eq,iso.to_inv], right_inverse],
|
||
rewrite [id_left], apply comp_inverse_cancel_right},
|
||
end
|
||
|
||
definition strict_left_inverse (F : C ⇒ D) [H : is_isomorphism F] : F⁻¹ˢ ∘f F = 1 :=
|
||
begin
|
||
fapply functor_eq,
|
||
{ intro d, esimp, apply left_inv},
|
||
{ intro d d' g, esimp, apply comp_eq_of_eq_inverse_comp, apply comp_inverse_eq_of_eq_comp,
|
||
apply inv_eq_of_eq, rewrite [+respect_comp,-assoc], apply ap011 (λx y, x ∘ F g ∘ y),
|
||
{ rewrite [adj], rewrite [▸*,respect_inv_of_eq F]},
|
||
{ rewrite [adj,▸*,respect_hom_of_eq F]}},
|
||
end
|
||
end
|
||
|
||
definition is_equivalence_of_is_isomorphism [instance] [constructor] (F : C ⇒ D)
|
||
[is_isomorphism F] : is_equivalence F :=
|
||
begin
|
||
fapply is_equivalence.mk,
|
||
{ apply F⁻¹ˢ},
|
||
{ apply iso_of_eq !strict_left_inverse},
|
||
{ apply iso_of_eq !strict_right_inverse},
|
||
end
|
||
|
||
definition equivalence_of_isomorphism [constructor] (F : C ≅c D) : C ≃c D :=
|
||
equivalence.mk F _
|
||
|
||
theorem is_prop_is_equivalence [instance] {C : Category} {D : Precategory} (F : C ⇒ D)
|
||
: is_prop (is_equivalence F) :=
|
||
begin
|
||
have f : is_equivalence F ≃ Σ(H : is_left_adjoint F), is_iso (unit F) × is_iso (counit F),
|
||
begin
|
||
fapply equiv.MK,
|
||
{ intro H, induction H, fconstructor: constructor, repeat (esimp;assumption) },
|
||
{ intro H, induction H with H1 H2, induction H1, induction H2, constructor,
|
||
repeat (esimp at *;assumption)},
|
||
{ intro H, induction H with H1 H2, induction H1, induction H2, reflexivity},
|
||
{ intro H, induction H, reflexivity}
|
||
end,
|
||
exact is_trunc_equiv_closed_rev -1 f _
|
||
end
|
||
|
||
theorem is_prop_is_isomorphism [instance] (F : C ⇒ D) : is_prop (is_isomorphism F) :=
|
||
by unfold is_isomorphism; exact _
|
||
|
||
/- closure properties -/
|
||
|
||
definition is_isomorphism_id [instance] [constructor] (C : Precategory)
|
||
: is_isomorphism (1 : C ⇒ C) :=
|
||
is_isomorphism.mk 1 !functor.id_right !functor.id_right
|
||
|
||
definition is_isomorphism_strict_inverse [constructor] (F : C ⇒ D) [K : is_isomorphism F]
|
||
: is_isomorphism F⁻¹ˢ :=
|
||
is_isomorphism.mk F !strict_right_inverse !strict_left_inverse
|
||
|
||
definition is_isomorphism_compose [constructor] (G : D ⇒ E) (F : C ⇒ D)
|
||
[H : is_isomorphism G] [K : is_isomorphism F] : is_isomorphism (G ∘f F) :=
|
||
is_isomorphism.mk
|
||
(F⁻¹ˢ ∘f G⁻¹ˢ)
|
||
abstract begin
|
||
rewrite [functor.assoc,-functor.assoc F⁻¹ˢ,strict_left_inverse,functor.id_right,
|
||
strict_left_inverse]
|
||
end end
|
||
abstract begin
|
||
rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right,
|
||
strict_right_inverse]
|
||
end end
|
||
|
||
definition is_equivalence_id [constructor] (C : Precategory) : is_equivalence (1 : C ⇒ C) := _
|
||
|
||
definition is_equivalence_inverse [constructor] (F : C ⇒ D) [K : is_equivalence F]
|
||
: is_equivalence F⁻¹ᴱ :=
|
||
is_equivalence.mk F (iso_counit F) (iso_unit F)
|
||
|
||
definition is_equivalence_compose [constructor] (G : D ⇒ E) (F : C ⇒ D)
|
||
[H : is_equivalence G] [K : is_equivalence F] : is_equivalence (G ∘f F) :=
|
||
is_equivalence.mk
|
||
(F⁻¹ᴱ ∘f G⁻¹ᴱ)
|
||
abstract begin
|
||
rewrite [functor.assoc,-functor.assoc F⁻¹ᴱ],
|
||
refine ((_ ∘fi !iso_unit) ∘if _) ⬝i _,
|
||
refine (iso_of_eq !functor.id_right ∘if _) ⬝i _,
|
||
apply iso_unit
|
||
end end
|
||
abstract begin
|
||
rewrite [functor.assoc,-functor.assoc G],
|
||
refine ((_ ∘fi !iso_counit) ∘if _) ⬝i _,
|
||
refine (iso_of_eq !functor.id_right ∘if _) ⬝i _,
|
||
apply iso_counit
|
||
end end
|
||
|
||
variable (C)
|
||
definition equivalence.refl [refl] [constructor] : C ≃c C :=
|
||
equivalence.mk _ !is_equivalence_id
|
||
|
||
definition isomorphism.refl [refl] [constructor] : C ≅c C :=
|
||
isomorphism.mk _ !is_isomorphism_id
|
||
|
||
variable {C}
|
||
|
||
definition equivalence.symm [symm] [constructor] (H : C ≃c D) : D ≃c C :=
|
||
equivalence.mk _ (is_equivalence_inverse H)
|
||
|
||
definition isomorphism.symm [symm] [constructor] (H : C ≅c D) : D ≅c C :=
|
||
isomorphism.mk _ (is_isomorphism_strict_inverse H)
|
||
|
||
definition equivalence.trans [trans] [constructor] (H : C ≃c D) (K : D ≃c E) : C ≃c E :=
|
||
equivalence.mk _ (is_equivalence_compose K H)
|
||
|
||
definition isomorphism.trans [trans] [constructor] (H : C ≅c D) (K : D ≅c E) : C ≅c E :=
|
||
isomorphism.mk _ (is_isomorphism_compose K H)
|
||
|
||
definition equivalence.to_strict_inverse [unfold 3] (H : C ≃c D) : D ⇒ C :=
|
||
H⁻¹ᴱ
|
||
|
||
definition isomorphism.to_strict_inverse [unfold 3] (H : C ≅c D) : D ⇒ C :=
|
||
H⁻¹ˢ
|
||
|
||
definition is_isomorphism_of_is_equivalence [constructor] {C D : Category} (F : C ⇒ D)
|
||
[H : is_equivalence F] : is_isomorphism F :=
|
||
begin
|
||
fapply is_isomorphism.mk,
|
||
{ exact F⁻¹ᴱ},
|
||
{ apply eq_of_iso, apply iso_unit},
|
||
{ apply eq_of_iso, apply iso_counit},
|
||
end
|
||
|
||
definition isomorphism_of_equivalence [constructor] {C D : Category} (F : C ≃c D) : C ≅c D :=
|
||
isomorphism.mk F !is_isomorphism_of_is_equivalence
|
||
|
||
definition equivalence_eq {C : Category} {D : Precategory} {F F' : C ≃c D}
|
||
(p : equivalence.to_functor F = equivalence.to_functor F') : F = F' :=
|
||
begin
|
||
induction F, induction F', exact apd011 equivalence.mk p !is_prop.elimo
|
||
end
|
||
|
||
definition isomorphism_eq {F F' : C ≅c D}
|
||
(p : isomorphism.to_functor F = isomorphism.to_functor F') : F = F' :=
|
||
begin
|
||
induction F, induction F', exact apd011 isomorphism.mk p !is_prop.elimo
|
||
end
|
||
|
||
definition is_equiv_isomorphism_of_equivalence [constructor] (C D : Category)
|
||
: is_equiv (@equivalence_of_isomorphism C D) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ exact isomorphism_of_equivalence},
|
||
{ intro F, apply equivalence_eq, reflexivity},
|
||
{ intro F, apply isomorphism_eq, reflexivity},
|
||
end
|
||
|
||
definition isomorphism_equiv_equivalence [constructor] (C D : Category)
|
||
: (C ≅c D) ≃ (C ≃c D) :=
|
||
equiv.mk _ !is_equiv_isomorphism_of_equivalence
|
||
|
||
definition isomorphism_of_eq [constructor] {C D : Precategory} (p : C = D) : C ≅c D :=
|
||
isomorphism.MK (functor_of_eq p)
|
||
(functor_of_eq p⁻¹)
|
||
(by induction p; reflexivity)
|
||
(by induction p; reflexivity)
|
||
|
||
definition equiv_ob_of_isomorphism [constructor] {C D : Precategory} (H : C ≅c D) : C ≃ D :=
|
||
equiv.mk H _
|
||
|
||
definition equiv_hom_of_isomorphism [constructor] {C D : Precategory} (H : C ≅c D) (c c' : C)
|
||
: c ⟶ c' ≃ H c ⟶ H c' :=
|
||
equiv.mk (to_fun_hom (isomorphism.to_functor H)) _
|
||
|
||
/- weak equivalences -/
|
||
|
||
theorem is_prop_is_weak_equivalence [instance] (F : C ⇒ D) : is_prop (is_weak_equivalence F) :=
|
||
by unfold is_weak_equivalence; exact _
|
||
|
||
definition is_weak_equivalence_of_is_equivalence [instance] (F : C ⇒ D) [is_equivalence F]
|
||
: is_weak_equivalence F :=
|
||
(_, _)
|
||
|
||
definition fully_faithful_of_is_weak_equivalence.mk [instance] (F : C ⇒ D)
|
||
[H : is_weak_equivalence F] : fully_faithful F :=
|
||
pr1 H
|
||
|
||
definition essentially_surjective_of_is_weak_equivalence.mk [instance] (F : C ⇒ D)
|
||
[H : is_weak_equivalence F] : essentially_surjective F :=
|
||
pr2 H
|
||
|
||
definition is_weak_equivalence_compose (G : D ⇒ E) (F : C ⇒ D)
|
||
[H : is_weak_equivalence G] [K : is_weak_equivalence F] : is_weak_equivalence (G ∘f F) :=
|
||
(fully_faithful_compose G F, essentially_surjective_compose G F)
|
||
|
||
definition weak_equivalence.mk [constructor] (F : C ⇒ D) (H : is_weak_equivalence F) : C ≃w D :=
|
||
weak_equivalence.mk' C 1 F
|
||
|
||
definition weak_equivalence.symm [unfold 3] : C ≃w D → D ≃w C
|
||
| (@weak_equivalence.mk' _ _ X F₁ F₂ H₁ H₂) := weak_equivalence.mk' X F₂ F₁
|
||
|
||
/- TODO
|
||
definition is_equiv_isomorphism_of_eq [constructor] (C D : Precategory)
|
||
: is_equiv (@isomorphism_of_eq C D) :=
|
||
begin
|
||
fapply adjointify,
|
||
{ intro H, fapply Precategory_eq_of_equiv,
|
||
{ apply equiv_ob_of_isomorphism H},
|
||
{ exact equiv_hom_of_isomorphism H},
|
||
{ /-exact sorry FAILS-/ intros, esimp, apply respect_comp}},
|
||
{ intro H, apply isomorphism_eq, esimp, fapply functor_eq: esimp,
|
||
{ intro c, exact sorry},
|
||
{ exact sorry}},
|
||
{ intro p, induction p, esimp, exact sorry},
|
||
end
|
||
|
||
definition eq_equiv_isomorphism [constructor] (C D : Precategory)
|
||
: (C = D) ≃ (C ≅c D) :=
|
||
equiv.mk _ !is_equiv_isomorphism_of_eq
|
||
|
||
definition equivalence_of_eq [unfold 3] [reducible] {C D : Precategory} (p : C = D) : C ≃c D :=
|
||
equivalence_of_isomorphism (isomorphism_of_eq p)
|
||
|
||
definition eq_equiv_equivalence [constructor] (C D : Category) : (C = D) ≃ (C ≃c D) :=
|
||
!eq_equiv_isomorphism ⬝e !isomorphism_equiv_equivalence
|
||
|
||
definition is_equivalence_equiv [constructor] (F : C ⇒ D)
|
||
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
|
||
sorry
|
||
|
||
definition is_equivalence_equiv_is_weak_equivalence [constructor] {C D : Category}
|
||
(F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F :=
|
||
sorry
|
||
|
||
-- weak_equivalence.trans
|
||
-/
|
||
|
||
|
||
/- TODO?
|
||
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
|
||
≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1),
|
||
sorry ⬝ ap (λ(H : C ⇒ C), F ∘f H) η ⬝ sorry = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
|
||
sorry
|
||
|
||
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
|
||
≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 :=
|
||
sorry
|
||
-/
|
||
|
||
end category
|