5346b67651
The idea is to make it clear that io_state is distinguish it from proof_state, and from leanlua_state. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
456 lines
18 KiB
C++
456 lines
18 KiB
C++
/*
|
|
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Leonardo de Moura
|
|
*/
|
|
#include <atomic>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
#include <utility>
|
|
#include <functional>
|
|
|
|
#include "util/map.h"
|
|
#include "util/sstream.h"
|
|
#include "util/exception.h"
|
|
#include "kernel/environment.h"
|
|
#include "library/expr_pair.h"
|
|
#include "library/io_state.h"
|
|
#include "library/all/all.h"
|
|
#include "frontends/lean/operator_info.h"
|
|
#include "frontends/lean/coercion.h"
|
|
#include "frontends/lean/frontend.h"
|
|
#include "frontends/lean/notation.h"
|
|
#include "frontends/lean/pp.h"
|
|
|
|
namespace lean {
|
|
static std::vector<bool> g_empty_vector;
|
|
/**
|
|
\brief Environment extension object for the Lean default frontend.
|
|
*/
|
|
struct lean_extension : public environment::extension {
|
|
typedef std::pair<std::vector<bool>, name> implicit_info;
|
|
// Remark: only named objects are stored in the dictionary.
|
|
typedef std::unordered_map<name, operator_info, name_hash, name_eq> operator_table;
|
|
typedef std::unordered_map<name, implicit_info, name_hash, name_eq> implicit_table;
|
|
typedef std::unordered_map<expr, list<operator_info>, expr_hash, std::equal_to<expr>> expr_to_operators;
|
|
typedef std::unordered_map<expr_pair, expr, expr_pair_hash, expr_pair_eq> coercion_map;
|
|
typedef std::unordered_map<expr, list<expr_pair>, expr_hash, std::equal_to<expr>> expr_to_coercions;
|
|
typedef std::unordered_set<expr, expr_hash, std::equal_to<expr>> coercion_set;
|
|
|
|
operator_table m_nud; // nud table for Pratt's parser
|
|
operator_table m_led; // led table for Pratt's parser
|
|
expr_to_operators m_expr_to_operators; // map denotations to operators (this is used for pretty printing)
|
|
implicit_table m_implicit_table; // track the number of implicit arguments for a symbol.
|
|
coercion_map m_coercion_map; // mapping from (given_type, expected_type) -> coercion
|
|
coercion_set m_coercion_set; // Set of coercions
|
|
expr_to_coercions m_type_coercions; // mapping type -> list (to-type, function)
|
|
|
|
lean_extension const * get_parent() const {
|
|
return environment::extension::get_parent<lean_extension>();
|
|
}
|
|
|
|
/** \brief Return the nud operator for the given symbol. */
|
|
operator_info find_nud(name const & n) const {
|
|
auto it = m_nud.find(n);
|
|
if (it != m_nud.end())
|
|
return it->second;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->find_nud(n);
|
|
else
|
|
return operator_info();
|
|
}
|
|
|
|
/** \brief Return the led operator for the given symbol. */
|
|
operator_info find_led(name const & n) const {
|
|
auto it = m_led.find(n);
|
|
if (it != m_led.end())
|
|
return it->second;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->find_led(n);
|
|
else
|
|
return operator_info();
|
|
}
|
|
|
|
/**
|
|
\brief Return true if the given operator is defined in this
|
|
frontend object (parent frontends are ignored).
|
|
*/
|
|
bool defined_here(operator_info const & n, bool led) const {
|
|
if (led)
|
|
return m_led.find(n.get_op_name()) != m_led.end();
|
|
else
|
|
return m_nud.find(n.get_op_name()) != m_nud.end();
|
|
}
|
|
|
|
/** \brief Return the led/nud operator for the given symbol. */
|
|
operator_info find_op(name const & n, bool led) const {
|
|
return led ? find_led(n) : find_nud(n);
|
|
}
|
|
|
|
/** \brief Insert a new led/nud operator. */
|
|
void insert_op(operator_info const & op, bool led) {
|
|
if (led)
|
|
insert(m_led, op.get_op_name(), op);
|
|
else
|
|
insert(m_nud, op.get_op_name(), op);
|
|
}
|
|
|
|
/** \brief Find the operator that is used as notation for the given expression. */
|
|
operator_info find_op_for(expr const & e, bool unicode) const {
|
|
auto it = m_expr_to_operators.find(e);
|
|
if (it != m_expr_to_operators.end()) {
|
|
auto l = it->second;
|
|
for (auto op : l) {
|
|
if (unicode || op.is_safe_ascii())
|
|
return op;
|
|
}
|
|
}
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->find_op_for(e, unicode);
|
|
else
|
|
return operator_info();
|
|
}
|
|
|
|
/** \brief Remove all internal denotations that are associated with the given operator symbol (aka notation) */
|
|
void remove_bindings(operator_info const & op) {
|
|
lean_extension const * parent = get_parent();
|
|
for (expr const & d : op.get_denotations()) {
|
|
if (parent && parent->find_op_for(d, true)) {
|
|
// parent has an association for d... we must hide it.
|
|
insert(m_expr_to_operators, d, list<operator_info>(operator_info()));
|
|
} else {
|
|
m_expr_to_operators.erase(d);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/** \brief Add a new entry d -> op in the mapping m_expr_to_operators */
|
|
void insert_expr_to_operator_entry(expr const & d, operator_info const & op) {
|
|
list<operator_info> & l = m_expr_to_operators[d];
|
|
l = cons(op, l);
|
|
}
|
|
|
|
/** \brief Register the new operator in the tables for parsing and pretty printing. */
|
|
void register_new_op(operator_info new_op, expr const & d, bool led) {
|
|
new_op.add_expr(d);
|
|
insert_op(new_op, led);
|
|
insert_expr_to_operator_entry(d, new_op);
|
|
}
|
|
|
|
/**
|
|
\brief Two operator (aka notation) denotations are compatible
|
|
iff one of the following holds:
|
|
|
|
1) Both do not have implicit arguments
|
|
|
|
2) Both have implicit arguments, and the implicit arguments
|
|
occur in the same positions.
|
|
|
|
*/
|
|
bool compatible_denotation(expr const & d1, expr const & d2) {
|
|
return get_implicit_arguments(d1) == get_implicit_arguments(d2);
|
|
}
|
|
|
|
/**
|
|
\brief Return true iff the existing denotations (aka
|
|
overloads) for an operator op are compatible with the new
|
|
denotation d.
|
|
|
|
The compatibility is only an issue if implicit arguments are
|
|
used. If one of the denotations has implicit arguments, then
|
|
all of them should have implicit arguments, and the implicit
|
|
arguments should occur in the same positions.
|
|
*/
|
|
bool compatible_denotations(operator_info const & op, expr const & d) {
|
|
return std::all_of(op.get_denotations().begin(), op.get_denotations().end(), [&](expr const & prev_d) { return compatible_denotation(prev_d, d); });
|
|
}
|
|
|
|
/**
|
|
\brief Add a new operator and save information as object.
|
|
|
|
If the new operator does not conflict with existing operators,
|
|
then we just register it.
|
|
If it conflicts, there are two options:
|
|
1) It is an overload (we just add the internal name \c n as
|
|
new option.
|
|
2) It is a real conflict, and report the issue in the
|
|
diagnostic channel, and override the existing operator (aka notation).
|
|
*/
|
|
void add_op(operator_info new_op, expr const & d, bool led, environment & env, io_state & st) {
|
|
name const & opn = new_op.get_op_name();
|
|
operator_info old_op = find_op(opn, led);
|
|
if (!old_op) {
|
|
register_new_op(new_op, d, led);
|
|
} else if (old_op == new_op) {
|
|
if (compatible_denotations(old_op, d)) {
|
|
// overload
|
|
if (defined_here(old_op, led)) {
|
|
old_op.add_expr(d);
|
|
insert_expr_to_operator_entry(d, old_op);
|
|
} else {
|
|
// we must copy the operator because it was defined in
|
|
// a parent frontend.
|
|
new_op = old_op.copy();
|
|
register_new_op(new_op, d, led);
|
|
}
|
|
} else {
|
|
diagnostic(st) << "The denotation(s) for the existing notation:\n " << old_op
|
|
<< "\nhave been replaced with the new denotation:\n " << d
|
|
<< "\nbecause they conflict on how implicit arguments are used.\n";
|
|
remove_bindings(old_op);
|
|
register_new_op(new_op, d, led);
|
|
}
|
|
} else {
|
|
diagnostic(st) << "Notation has been redefined, the existing notation:\n " << old_op
|
|
<< "\nhas been replaced with:\n " << new_op << "\nbecause they conflict with each other.\n";
|
|
remove_bindings(old_op);
|
|
register_new_op(new_op, d, led);
|
|
}
|
|
env.add_neutral_object(new notation_declaration(new_op, d));
|
|
}
|
|
|
|
expr mk_explicit_definition_body(expr type, name const & n, unsigned i, unsigned sz) {
|
|
if (i == sz) {
|
|
buffer<expr> args;
|
|
args.push_back(mk_constant(n));
|
|
unsigned j = sz;
|
|
while (j > 0) { --j; args.push_back(mk_var(j)); }
|
|
return mk_app(args);
|
|
} else {
|
|
lean_assert(is_pi(type));
|
|
return mk_lambda(abst_name(type), abst_domain(type), mk_explicit_definition_body(abst_body(type), n, i+1, sz));
|
|
}
|
|
}
|
|
|
|
void mark_implicit_arguments(name const & n, unsigned sz, bool const * implicit, environment & env) {
|
|
if (env.has_children())
|
|
throw exception(sstream() << "failed to mark implicit arguments, frontend object is read-only");
|
|
object const & obj = env.get_object(n);
|
|
if (obj.kind() != object_kind::Definition && obj.kind() != object_kind::Postulate && obj.kind() != object_kind::Builtin)
|
|
throw exception(sstream() << "failed to mark implicit arguments, the object '" << n << "' is not a definition or postulate");
|
|
if (has_implicit_arguments(n))
|
|
throw exception(sstream() << "the object '" << n << "' already has implicit argument information associated with it");
|
|
name explicit_version(n, "explicit");
|
|
if (env.find_object(explicit_version))
|
|
throw exception(sstream() << "failed to mark implicit arguments for '" << n << "', the frontend already has an object named '" << explicit_version << "'");
|
|
expr const & type = obj.get_type();
|
|
unsigned num_args = 0;
|
|
expr it = type;
|
|
while (is_pi(it)) { num_args++; it = abst_body(it); }
|
|
if (sz > num_args)
|
|
throw exception(sstream() << "failed to mark implicit arguments for '" << n << "', object has only " << num_args << " arguments, but trying to mark " << sz << " arguments");
|
|
std::vector<bool> v(implicit, implicit+sz);
|
|
m_implicit_table[n] = mk_pair(v, explicit_version);
|
|
expr body = mk_explicit_definition_body(type, n, 0, sz);
|
|
if (obj.is_axiom() || obj.is_theorem()) {
|
|
env.add_theorem(explicit_version, type, body);
|
|
} else {
|
|
env.add_definition(explicit_version, type, body);
|
|
}
|
|
}
|
|
|
|
bool has_implicit_arguments(name const & n) const {
|
|
if (m_implicit_table.find(n) != m_implicit_table.end())
|
|
return true;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->has_implicit_arguments(n);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
std::vector<bool> const & get_implicit_arguments(name const & n) const {
|
|
auto it = m_implicit_table.find(n);
|
|
if (it != m_implicit_table.end())
|
|
return it->second.first;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->get_implicit_arguments(n);
|
|
else
|
|
return g_empty_vector;
|
|
}
|
|
|
|
std::vector<bool> const & get_implicit_arguments(expr const & n) const {
|
|
if (is_constant(n))
|
|
return get_implicit_arguments(const_name(n));
|
|
else
|
|
return g_empty_vector;
|
|
}
|
|
|
|
name const & get_explicit_version(name const & n) const {
|
|
auto it = m_implicit_table.find(n);
|
|
if (it != m_implicit_table.end())
|
|
return it->second.second;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->get_explicit_version(n);
|
|
else
|
|
return name::anonymous();
|
|
}
|
|
|
|
bool is_explicit(name const & n) const {
|
|
return !n.is_atomic() && get_explicit_version(n.get_prefix()) == n;
|
|
}
|
|
|
|
void add_coercion(expr const & f, environment & env) {
|
|
expr type = env.infer_type(f);
|
|
expr norm_type = env.normalize(type);
|
|
if (!is_arrow(norm_type))
|
|
throw exception("invalid coercion declaration, a coercion must have an arrow type (i.e., a non-dependent functional type)");
|
|
expr from = abst_domain(norm_type);
|
|
expr to = abst_body(norm_type);
|
|
if (from == to)
|
|
throw exception("invalid coercion declaration, 'from' and 'to' types are the same");
|
|
if (get_coercion(from, to))
|
|
throw exception("invalid coercion declaration, frontend already has a coercion for the given types");
|
|
m_coercion_map[expr_pair(from, to)] = f;
|
|
m_coercion_set.insert(f);
|
|
list<expr_pair> l = get_coercions(from);
|
|
insert(m_type_coercions, from, cons(expr_pair(to, f), l));
|
|
env.add_neutral_object(new coercion_declaration(f));
|
|
}
|
|
|
|
expr get_coercion(expr const & from_type, expr const & to_type) const {
|
|
expr_pair p(from_type, to_type);
|
|
auto it = m_coercion_map.find(p);
|
|
if (it != m_coercion_map.end())
|
|
return it->second;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->get_coercion(from_type, to_type);
|
|
else
|
|
return expr();
|
|
}
|
|
|
|
list<expr_pair> get_coercions(expr const & from_type) const {
|
|
auto r = m_type_coercions.find(from_type);
|
|
if (r != m_type_coercions.end())
|
|
return r->second;
|
|
lean_extension const * parent = get_parent();
|
|
if (parent)
|
|
return parent->get_coercions(from_type);
|
|
else
|
|
return list<expr_pair>();
|
|
}
|
|
|
|
bool is_coercion(expr const & f) const {
|
|
return m_coercion_set.find(f) != m_coercion_set.end();
|
|
}
|
|
};
|
|
|
|
struct lean_extension_initializer {
|
|
unsigned m_extid;
|
|
lean_extension_initializer() {
|
|
m_extid = environment::register_extension([](){ return std::unique_ptr<environment::extension>(new lean_extension()); });
|
|
}
|
|
};
|
|
|
|
static lean_extension_initializer g_lean_extension_initializer;
|
|
|
|
static lean_extension const & to_ext(environment const & env) {
|
|
return env.get_extension<lean_extension>(g_lean_extension_initializer.m_extid);
|
|
}
|
|
|
|
static lean_extension & to_ext(environment & env) {
|
|
return env.get_extension<lean_extension>(g_lean_extension_initializer.m_extid);
|
|
}
|
|
|
|
frontend::frontend() {
|
|
import_all(m_env);
|
|
init_builtin_notation(*this);
|
|
m_state.set_formatter(mk_pp_formatter(*this));
|
|
}
|
|
frontend::frontend(environment const & env, io_state const & s):m_env(env), m_state(s) {
|
|
import_all(m_env);
|
|
init_builtin_notation(*this);
|
|
}
|
|
|
|
void frontend::add_infix(name const & opn, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(infix(opn, p), d, true, m_env, m_state);
|
|
}
|
|
void frontend::add_infixl(name const & opn, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(infixl(opn, p), d, true, m_env, m_state);
|
|
}
|
|
void frontend::add_infixr(name const & opn, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(infixr(opn, p), d, true, m_env, m_state);
|
|
}
|
|
void frontend::add_prefix(name const & opn, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(prefix(opn, p), d, false, m_env, m_state);
|
|
}
|
|
void frontend::add_postfix(name const & opn, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(postfix(opn, p), d, true, m_env, m_state);
|
|
}
|
|
void frontend::add_mixfixl(unsigned sz, name const * opns, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(mixfixl(sz, opns, p), d, false, m_env, m_state);
|
|
}
|
|
void frontend::add_mixfixr(unsigned sz, name const * opns, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(mixfixr(sz, opns, p), d, true, m_env, m_state);
|
|
}
|
|
void frontend::add_mixfixc(unsigned sz, name const * opns, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(mixfixc(sz, opns, p), d, false, m_env, m_state);
|
|
}
|
|
void frontend::add_mixfixo(unsigned sz, name const * opns, unsigned p, expr const & d) {
|
|
to_ext(m_env).add_op(mixfixo(sz, opns, p), d, true, m_env, m_state);
|
|
}
|
|
operator_info frontend::find_op_for(expr const & n, bool unicode) const {
|
|
operator_info r = to_ext(m_env).find_op_for(n, unicode);
|
|
if (r || !is_constant(n)) {
|
|
return r;
|
|
} else {
|
|
object const & obj = find_object(const_name(n));
|
|
if (obj && obj.is_builtin() && obj.get_name() == n)
|
|
return to_ext(m_env).find_op_for(obj.get_value(), unicode);
|
|
else
|
|
return r;
|
|
}
|
|
}
|
|
operator_info frontend::find_nud(name const & n) const {
|
|
return to_ext(m_env).find_nud(n);
|
|
}
|
|
operator_info frontend::find_led(name const & n) const {
|
|
return to_ext(m_env).find_led(n);
|
|
}
|
|
void frontend::mark_implicit_arguments(name const & n, unsigned sz, bool const * implicit) {
|
|
to_ext(m_env).mark_implicit_arguments(n, sz, implicit, m_env);
|
|
}
|
|
void frontend::mark_implicit_arguments(name const & n, std::initializer_list<bool> const & l) {
|
|
mark_implicit_arguments(n, l.size(), l.begin());
|
|
}
|
|
void frontend::mark_implicit_arguments(expr const & n, std::initializer_list<bool> const & l) {
|
|
if (is_constant(n)) {
|
|
mark_implicit_arguments(const_name(n), l);
|
|
} else {
|
|
lean_assert(is_value(n));
|
|
mark_implicit_arguments(to_value(n).get_name(), l);
|
|
}
|
|
}
|
|
bool frontend::has_implicit_arguments(name const & n) const {
|
|
return to_ext(m_env).has_implicit_arguments(n);
|
|
}
|
|
std::vector<bool> const & frontend::get_implicit_arguments(name const & n) const {
|
|
return to_ext(m_env).get_implicit_arguments(n);
|
|
}
|
|
name const & frontend::get_explicit_version(name const & n) const {
|
|
return to_ext(m_env).get_explicit_version(n);
|
|
}
|
|
bool frontend::is_explicit(name const & n) const {
|
|
return to_ext(m_env).is_explicit(n);
|
|
}
|
|
void frontend::add_coercion(expr const & f) {
|
|
to_ext(m_env).add_coercion(f, m_env);
|
|
}
|
|
expr frontend::get_coercion(expr const & from_type, expr const & to_type) const {
|
|
return to_ext(m_env).get_coercion(from_type, to_type);
|
|
}
|
|
list<expr_pair> frontend::get_coercions(expr const & from_type) const {
|
|
return to_ext(m_env).get_coercions(from_type);
|
|
}
|
|
bool frontend::is_coercion(expr const & f) const {
|
|
return to_ext(m_env).is_coercion(f);
|
|
}
|
|
}
|