lean2/hott/eq2.hlean

124 lines
4.6 KiB
Text

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about 2-dimensional paths
-/
import .cubical.square
open function
namespace eq
variables {A B C : Type} {f : A → B} {a a' a₁ a₂ a₃ a₄ : A} {b b' : B}
theorem ap_weakly_constant_eq (p : Πx, f x = b) (q : a = a') :
ap_weakly_constant p q =
eq_con_inv_of_con_eq ((eq_of_square (square_of_pathover (apdo p q)))⁻¹ ⬝
whisker_left (p a) (ap_constant q b)) :=
begin
induction q, esimp, generalize (p a), intro p, cases p, apply idpath idp
end
definition ap_inv2 {p q : a = a'} (r : p = q)
: square (ap (ap f) (inverse2 r))
(inverse2 (ap (ap f) r))
(ap_inv f p)
(ap_inv f q) :=
by induction r;exact hrfl
definition ap_con2 {p₁ q₁ : a₁ = a₂} {p₂ q₂ : a₂ = a₃} (r₁ : p₁ = q₁) (r₂ : p₂ = q₂)
: square (ap (ap f) (r₁ ◾ r₂))
(ap (ap f) r₁ ◾ ap (ap f) r₂)
(ap_con f p₁ p₂)
(ap_con f q₁ q₂) :=
by induction r₂;induction r₁;exact hrfl
theorem ap_con_right_inv_sq {A B : Type} {a1 a2 : A} (f : A → B) (p : a1 = a2) :
square (ap (ap f) (con.right_inv p))
(con.right_inv (ap f p))
(ap_con f p p⁻¹ ⬝ whisker_left _ (ap_inv f p))
idp :=
by cases p;apply hrefl
theorem ap_con_left_inv_sq {A B : Type} {a1 a2 : A} (f : A → B) (p : a1 = a2) :
square (ap (ap f) (con.left_inv p))
(con.left_inv (ap f p))
(ap_con f p⁻¹ p ⬝ whisker_right (ap_inv f p) _)
idp :=
by cases p;apply vrefl
theorem ap_ap_weakly_constant {A B C : Type} (g : B → C) {f : A → B} {b : B}
(p : Πx, f x = b) {x y : A} (q : x = y) :
square (ap (ap g) (ap_weakly_constant p q))
(ap_weakly_constant (λa, ap g (p a)) q)
(ap_compose g f q)⁻¹
(!ap_con ⬝ whisker_left _ !ap_inv) :=
begin
induction q, esimp, generalize (p x), intro p, cases p, apply ids
-- induction q, rewrite [↑ap_compose,ap_inv], apply hinverse, apply ap_con_right_inv_sq,
end
theorem ap_ap_compose {A B C D : Type} (h : C → D) (g : B → C) (f : A → B)
{x y : A} (p : x = y) :
square (ap_compose (h ∘ g) f p)
(ap (ap h) (ap_compose g f p))
(ap_compose h (g ∘ f) p)
(ap_compose h g (ap f p)) :=
by induction p;exact ids
theorem ap_compose_inv {A B C : Type} (g : B → C) (f : A → B)
{x y : A} (p : x = y) :
square (ap_compose g f p⁻¹)
(inverse2 (ap_compose g f p) ⬝ (ap_inv g (ap f p))⁻¹)
(ap_inv (g ∘ f) p)
(ap (ap g) (ap_inv f p)) :=
by induction p;exact ids
theorem ap_compose_con (g : B → C) (f : A → B) (p : a₁ = a₂) (q : a₂ = a₃) :
square (ap_compose g f (p ⬝ q))
(ap_compose g f p ◾ ap_compose g f q ⬝ (ap_con g (ap f p) (ap f q))⁻¹)
(ap_con (g ∘ f) p q)
(ap (ap g) (ap_con f p q)) :=
by induction q;induction p;exact ids
theorem ap_compose_natural {A B C : Type} (g : B → C) (f : A → B)
{x y : A} {p q : x = y} (r : p = q) :
square (ap (ap (g ∘ f)) r)
(ap (ap g ∘ ap f) r)
(ap_compose g f p)
(ap_compose g f q) :=
natural_square (ap_compose g f) r
theorem ap_eq_of_con_inv_eq_idp (f : A → B) {p q : a₁ = a₂} (r : p ⬝ q⁻¹ = idp)
: ap02 f (eq_of_con_inv_eq_idp r) =
eq_of_con_inv_eq_idp (whisker_left _ !ap_inv⁻¹ ⬝ !ap_con⁻¹ ⬝ ap02 f r)
:=
by induction q;esimp at *;cases r;reflexivity
theorem eq_of_con_inv_eq_idp_con2 {p p' q q' : a₁ = a₂} (r : p = p') (s : q = q')
(t : p' ⬝ q'⁻¹ = idp)
: eq_of_con_inv_eq_idp (r ◾ inverse2 s ⬝ t) = r ⬝ eq_of_con_inv_eq_idp t ⬝ s⁻¹ :=
by induction s;induction r;induction q;reflexivity
-- definition naturality_apdo {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a}
-- (H : f ~ g) (p : a = a₂)
-- : squareover B vrfl (apdo f p) (apdo g p)
-- (pathover_idp_of_eq (H a)) (pathover_idp_of_eq (H a₂)) :=
-- by induction p;esimp;exact hrflo
definition naturality_apdo_eq {A : Type} {B : A → Type} {a a₂ : A} {f g : Πa, B a}
(H : f ~ g) (p : a = a₂)
: apdo f p = concato_eq (eq_concato (H a) (apdo g p)) (H a₂)⁻¹ :=
begin
induction p, esimp,
generalizes [H a, g a], intro ga Ha, induction Ha,
reflexivity
end
theorem con_tr_idp {P : A → Type} {x y : A} (q : x = y) (u : P x) :
con_tr idp q u = ap (λp, p ▸ u) (idp_con q) :=
by induction q;reflexivity
end eq