463e70332d
We say an inductive type T is reflexive if it contains at least one constructor that takes as an argument a function returning T. For reflexive types it doesn't seen to be possible to define a single brec_on that can eliminate to Type.{>=1} and Prop. The universe level expressions get too complicated. Even if we extend the universe constraint solver in the kernel, the additional complexity might be a problem. We workaround this issue by defining two versions of brec_on: - One (brec_on) that eliminates to Type.{>=1}, and - binduction_on that eliminates to Prop. For non-reflexive types, we can combine both of them.
109 lines
4.6 KiB
Text
109 lines
4.6 KiB
Text
import data.unit data.prod
|
|
|
|
inductive ftree (A : Type) (B : Type) : Type :=
|
|
leafa : ftree A B,
|
|
node : (A → B → ftree A B) → (B → ftree A B) → ftree A B
|
|
|
|
namespace ftree
|
|
|
|
definition below.{l l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} (C : ftree A B → Type.{l+1}) (t : ftree A B)
|
|
: Type.{max l₁ l₂ (l+1)} :=
|
|
@rec.{(max l₁ l₂ (l+1))+1 l₁ l₂}
|
|
A
|
|
B
|
|
(λ t : ftree A B, Type.{max l₁ l₂ (l+1)})
|
|
unit.{max l₁ l₂ (l+1)}
|
|
(λ (f₁ : A → B → ftree A B)
|
|
(f₂ : B → ftree A B)
|
|
(r₁ : Π (a : A) (b : B), Type.{max l₁ l₂ (l+1)})
|
|
(r₂ : Π (b : B), Type.{max l₁ l₂ (l+1)}),
|
|
let fc₁ : Type.{max l₁ l₂ (l+1)} := Π (a : A) (b : B), C (f₁ a b) in
|
|
let fc₂ : Type.{max l₂ l+1} := Π (b : B), C (f₂ b) in
|
|
let fr₁ : Type.{max l₁ l₂ (l+1)} := Π (a : A) (b : B), r₁ a b in
|
|
let fr₂ : Type.{max l₁ l₂ (l+1)} := Π (b : B), r₂ b in
|
|
let p₁ : Type.{max l₁ l₂ (l+1)} := prod.{(max l₁ l₂ (l+1)) (max l₁ l₂ (l+1))} fc₁ fr₁ in
|
|
let p₂ : Type.{max l₁ l₂ (l+1)} := prod.{(max l₂ (l+1)) (max l₁ l₂ (l+1))} fc₂ fr₂ in
|
|
prod.{(max l₁ l₂ (l+1)) (max l₁ l₂ (l+1))} p₁ p₂)
|
|
t
|
|
|
|
definition pbelow.{l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} (C : ftree A B → Prop) (t : ftree A B)
|
|
: Prop :=
|
|
@rec.{1 l₁ l₂}
|
|
A
|
|
B
|
|
(λ t : ftree A B, Prop)
|
|
true
|
|
(λ (f₁ : A → B → ftree A B)
|
|
(f₂ : B → ftree A B)
|
|
(r₁ : Π (a : A) (b : B), Prop)
|
|
(r₂ : Π (b : B), Prop),
|
|
let fc₁ : Prop := ∀ (a : A) (b : B), C (f₁ a b) in
|
|
let fc₂ : Prop := ∀ (b : B), C (f₂ b) in
|
|
let fr₁ : Prop := ∀ (a : A) (b : B), r₁ a b in
|
|
let fr₂ : Prop := ∀ (b : B), r₂ b in
|
|
let p₁ : Prop := fc₁ ∧ fr₁ in
|
|
let p₂ : Prop := fc₂ ∧ fr₂ in
|
|
p₁ ∧ p₂)
|
|
t
|
|
|
|
definition brec_on.{l l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} {C : ftree A B → Type.{l+1}}
|
|
(t : ftree A B)
|
|
(F : Π (t : ftree A B), below C t → C t)
|
|
: C t :=
|
|
have gen : prod.{(l+1) (max l₁ l₂ (l+1))} (C t) (below C t), from
|
|
@rec.{(max l₁ l₂ (l+1)) l₁ l₂}
|
|
A
|
|
B
|
|
(λ t : ftree A B, prod.{(l+1) (max l₁ l₂ (l+1))} (C t) (below C t))
|
|
(have b : below C (leafa A B), from
|
|
unit.star.{max l₁ l₂ (l+1)},
|
|
have c : C (leafa A B), from
|
|
F (leafa A B) b,
|
|
prod.mk.{(l+1) (max l₁ l₂ (l+1))} c b)
|
|
(λ (f₁ : A → B → ftree A B)
|
|
(f₂ : B → ftree A B)
|
|
(r₁ : Π (a : A) (b : B), prod.{(l+1) (max l₁ l₂ (l+1))} (C (f₁ a b)) (below C (f₁ a b)))
|
|
(r₂ : Π (b : B), prod.{(l+1) (max l₁ l₂ (l+1))} (C (f₂ b)) (below C (f₂ b))),
|
|
let fc₁ : Π (a : A) (b : B), C (f₁ a b) := λ (a : A) (b : B), prod.pr1 (r₁ a b) in
|
|
let fr₁ : Π (a : A) (b : B), below C (f₁ a b) := λ (a : A) (b : B), prod.pr2 (r₁ a b) in
|
|
let fc₂ : Π (b : B), C (f₂ b) := λ (b : B), prod.pr1 (r₂ b) in
|
|
let fr₂ : Π (b : B), below C (f₂ b) := λ (b : B), prod.pr2 (r₂ b) in
|
|
have b : below C (node f₁ f₂), from
|
|
prod.mk (prod.mk fc₁ fr₁) (prod.mk fc₂ fr₂),
|
|
have c : C (node f₁ f₂), from
|
|
F (node f₁ f₂) b,
|
|
prod.mk c b)
|
|
t,
|
|
prod.pr1 gen
|
|
|
|
definition binduction_on.{l₁ l₂} {A : Type.{l₁}} {B : Type.{l₂}} {C : ftree A B → Prop}
|
|
(t : ftree A B)
|
|
(F : Π (t : ftree A B), pbelow C t → C t)
|
|
: C t :=
|
|
have gen : C t ∧ pbelow C t, from
|
|
@rec.{0 l₁ l₂}
|
|
A
|
|
B
|
|
(λ t : ftree A B, C t ∧ pbelow C t)
|
|
(have b : pbelow C (leafa A B), from
|
|
true.intro,
|
|
have c : C (leafa A B), from
|
|
F (leafa A B) b,
|
|
and.intro c b)
|
|
(λ (f₁ : A → B → ftree A B)
|
|
(f₂ : B → ftree A B)
|
|
(r₁ : ∀ (a : A) (b : B), C (f₁ a b) ∧ pbelow C (f₁ a b))
|
|
(r₂ : ∀ (b : B), C (f₂ b) ∧ pbelow C (f₂ b)),
|
|
let fc₁ : ∀ (a : A) (b : B), C (f₁ a b) := λ (a : A) (b : B), and.elim_left (r₁ a b) in
|
|
let fr₁ : ∀ (a : A) (b : B), pbelow C (f₁ a b) := λ (a : A) (b : B), and.elim_right (r₁ a b) in
|
|
let fc₂ : ∀ (b : B), C (f₂ b) := λ (b : B), and.elim_left (r₂ b) in
|
|
let fr₂ : ∀ (b : B), pbelow C (f₂ b) := λ (b : B), and.elim_right (r₂ b) in
|
|
have b : pbelow C (node f₁ f₂), from
|
|
and.intro (and.intro fc₁ fr₁) (and.intro fc₂ fr₂),
|
|
have c : C (node f₁ f₂), from
|
|
F (node f₁ f₂) b,
|
|
and.intro c b)
|
|
t,
|
|
and.elim_left gen
|
|
|
|
end ftree
|