lean2/library/data/real/division.lean
2015-11-08 14:04:59 -08:00

702 lines
24 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
The real numbers, constructed as equivalence classes of Cauchy sequences of rationals.
This construction follows Bishop and Bridges (1985).
At this point, we no longer proceed constructively: this file makes heavy use of decidability
and excluded middle.
-/
import data.real.basic data.real.order data.rat data.nat
open rat
open nat
open eq.ops pnat classical algebra
namespace rat_seq
local postfix ⁻¹ := pnat.inv
-----------------------------
-- Facts about absolute values of sequences, to define inverse
definition s_abs (s : seq) : seq := λ n, abs (s n)
theorem abs_reg_of_reg {s : seq} (Hs : regular s) : regular (s_abs s) :=
begin
intros,
apply algebra.le.trans,
apply algebra.abs_abs_sub_abs_le_abs_sub,
apply Hs
end
theorem abs_pos_of_nonzero {s : seq} (Hs : regular s) (Hnz : sep s zero) :
∃ N : +, ∀ m : +, m ≥ N → abs (s m) ≥ N⁻¹ :=
begin
rewrite [↑sep at Hnz, ↑s_lt at Hnz],
apply or.elim Hnz,
intro Hnz1,
have H' : pos (sneg s), begin
apply pos_of_pos_equiv,
rotate 2,
apply Hnz1,
rotate 1,
apply s_zero_add,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg | apply zero_is_reg)
end,
cases bdd_away_of_pos (reg_neg_reg Hs) H' with [N, HN],
existsi N,
intro m Hm,
apply le.trans,
apply HN m Hm,
rewrite ↑sneg,
apply neg_le_abs_self,
intro Hnz2,
let H' := pos_of_pos_equiv (reg_add_reg Hs (reg_neg_reg zero_is_reg)) (s_add_zero s Hs) Hnz2,
let H'' := bdd_away_of_pos Hs H',
cases H'' with [N, HN],
existsi N,
intro m Hm,
apply le.trans,
apply HN m Hm,
apply le_abs_self
end
theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_abs s ≡ s_abs t :=
begin
rewrite [↑equiv at *],
intro n,
rewrite ↑s_abs,
apply le.trans,
apply abs_abs_sub_abs_le_abs_sub,
apply Heq
end
theorem sep_zero_of_pos {s : seq} (Hs : regular s) (Hpos : pos s) : sep s zero :=
begin
apply or.inr,
apply pos_of_pos_equiv,
rotate 2,
apply Hpos,
apply Hs,
apply equiv.symm,
apply s_sub_zero Hs
end
------------------------
-- This section could be cleaned up.
private noncomputable definition pb {s : seq} (Hs : regular s) (Hpos : pos s) :=
some (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
private noncomputable definition ps {s : seq} (Hs : regular s) (Hsep : sep s zero) :=
some (abs_pos_of_nonzero Hs Hsep)
private theorem pb_spec {s : seq} (Hs : regular s) (Hpos : pos s) :
∀ m : +, m ≥ (pb Hs Hpos) → abs (s m) ≥ (pb Hs Hpos)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs (sep_zero_of_pos Hs Hpos))
private theorem ps_spec {s : seq} (Hs : regular s) (Hsep : sep s zero) :
∀ m : +, m ≥ (ps Hs Hsep) → abs (s m) ≥ (ps Hs Hsep)⁻¹ :=
some_spec (abs_pos_of_nonzero Hs Hsep)
noncomputable definition s_inv {s : seq} (Hs : regular s) (n : +) : :=
if H : sep s zero then
(if n < (ps Hs H) then 1 / (s ((ps Hs H) * (ps Hs H) * (ps Hs H)))
else 1 / (s ((ps Hs H) * (ps Hs H) * n)))
else 0
private theorem peq {s : seq} (Hsep : sep s zero) (Hpos : pos s) (Hs : regular s) :
pb Hs Hpos = ps Hs Hsep := rfl
private theorem s_inv_of_sep_lt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n < (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_pos Hn
end
private theorem s_inv_of_sep_gt_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s_inv Hs n = 1 / s ((ps Hs Hsep) * (ps Hs Hsep) * n) :=
begin
apply eq.trans,
apply dif_pos Hsep,
apply dif_neg (pnat.not_lt_of_ge Hn)
end
private theorem s_inv_of_pos_lt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n < (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * (pb Hs Hpos)) :=
s_inv_of_sep_lt_p Hs (sep_zero_of_pos Hs Hpos) Hn
private theorem s_inv_of_pos_gt_p {s : seq} (Hs : regular s) (Hpos : pos s) {n : +}
(Hn : n ≥ (pb Hs Hpos)) : s_inv Hs n = 1 / s ((pb Hs Hpos) * (pb Hs Hpos) * n) :=
s_inv_of_sep_gt_p Hs (sep_zero_of_pos Hs Hpos) Hn
private theorem le_ps {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) :
abs (s_inv Hs n) ≤ (rat_of_pnat (ps Hs Hsep)) :=
if Hn : n < ps Hs Hsep then
(begin
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hn), abs_one_div],
apply div_le_pnat,
apply ps_spec,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite [(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hn)), abs_one_div],
apply div_le_pnat,
apply ps_spec,
rewrite pnat.mul_assoc,
apply pnat.mul_le_mul_right
end)
theorem s_inv_zero : s_inv zero_is_reg = zero :=
funext (λ n, dif_neg (!not_sep_self))
private theorem s_inv_of_zero' {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) (n : +) : s_inv Hs n = 0 :=
dif_neg Hz
theorem s_inv_of_zero {s : seq} (Hs : regular s) (Hz : ¬ sep s zero) : s_inv Hs = zero :=
begin
apply funext,
intro n,
apply s_inv_of_zero' Hs Hz n
end
private theorem s_ne_zero_of_ge_p {s : seq} (Hs : regular s) (Hsep : sep s zero) {n : +}
(Hn : n ≥ (ps Hs Hsep)) : s n ≠ 0 :=
begin
let Hps := ps_spec Hs Hsep,
apply ne_zero_of_abs_ne_zero,
apply ne_of_gt,
apply gt_of_ge_of_gt,
apply Hps,
apply Hn,
apply pnat.inv_pos
end
theorem reg_inv_reg {s : seq} (Hs : regular s) (Hsep : sep s zero) : regular (s_inv Hs) :=
begin
rewrite ↑regular,
intros,
have Hsp : s ((ps Hs Hsep) * (ps Hs Hsep) * (ps Hs Hsep)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep !pnat.mul_le_mul_left,
have Hspn : s ((ps Hs Hsep) * (ps Hs Hsep) * n) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * n ≥ ps Hs Hsep, by
rewrite pnat.mul_assoc; apply pnat.mul_le_mul_right),
have Hspm : s ((ps Hs Hsep) * (ps Hs Hsep) * m) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep (show (ps Hs Hsep) * (ps Hs Hsep) * m ≥ ps Hs Hsep, by
rewrite pnat.mul_assoc; apply pnat.mul_le_mul_right),
cases em (m < ps Hs Hsep) with [Hmlt, Hmlt],
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt), (s_inv_of_sep_lt_p Hs Hsep Hnlt)],
rewrite [algebra.sub_self, abs_zero],
apply add_invs_nonneg,
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hmlt),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hnlt))],
rewrite [(!div_sub_div Hsp Hspn), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply le.trans,
apply mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hsp Hspn), abs_mul],
apply algebra.mul_le_mul,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hmlt),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', add.comm],
apply algebra.add_le_add_right,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hmlt,
cases em (n < ps Hs Hsep) with [Hnlt, Hnlt],
rewrite [(s_inv_of_sep_lt_p Hs Hsep Hnlt),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hmlt))],
rewrite [(!div_sub_div Hspm Hsp), div_eq_mul_one_div, *abs_mul, *mul_one, *one_mul],
apply le.trans,
apply algebra.mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hspm Hsp), abs_mul],
apply algebra.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_lt_p Hs Hsep Hnlt),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', add.comm],
apply rat.add_le_add_left,
apply inv_ge_of_le,
apply pnat.le_of_lt,
apply Hnlt,
rewrite [(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hnlt)),
(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hmlt))],
rewrite [(!div_sub_div Hspm Hspn), div_eq_mul_one_div, abs_mul, *one_mul, *mul_one],
apply le.trans,
apply algebra.mul_le_mul,
apply Hs,
rewrite [-(mul_one 1), -(!field.div_mul_div Hspm Hspn), abs_mul],
apply algebra.mul_le_mul,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hmlt)),
apply le_ps Hs Hsep,
rewrite -(s_inv_of_sep_gt_p Hs Hsep (pnat.le_of_not_gt Hnlt)),
apply le_ps Hs Hsep,
apply abs_nonneg,
apply le_of_lt !rat_of_pnat_is_pos,
apply abs_nonneg,
apply add_invs_nonneg,
rewrite [right_distrib, *pnat_cancel', add.comm],
apply algebra.le.refl
end
theorem s_inv_ne_zero {s : seq} (Hs : regular s) (Hsep : sep s zero) (n : +) : s_inv Hs n ≠ 0 :=
if H : n ≥ ps Hs Hsep then
(begin
rewrite (s_inv_of_sep_gt_p Hs Hsep H),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply pnat.le_trans,
apply H,
apply pnat.mul_le_mul_left
end)
else
(begin
rewrite (s_inv_of_sep_lt_p Hs Hsep (pnat.lt_of_not_le H)),
apply one_div_ne_zero,
apply s_ne_zero_of_ge_p,
apply pnat.mul_le_mul_left
end)
protected theorem mul_inv {s : seq} (Hs : regular s) (Hsep : sep s zero) :
smul s (s_inv Hs) ≡ one :=
begin
let Rsi := reg_inv_reg Hs Hsep,
let Rssi := reg_mul_reg Hs Rsi,
apply eq_of_bdd Rssi one_is_reg,
intros,
existsi max (ps Hs Hsep) j,
intro n Hn,
have Hnz : s_inv Hs ((K₂ s (s_inv Hs)) * 2 * n) ≠ 0, from s_inv_ne_zero Hs Hsep _,
rewrite [↑smul, ↑one, mul.comm, -(mul_one_div_cancel Hnz),
-algebra.mul_sub_left_distrib, abs_mul],
apply le.trans,
apply mul_le_mul_of_nonneg_right,
apply canon_2_bound_right s,
apply Rsi,
apply abs_nonneg,
have Hp : (K₂ s (s_inv Hs)) * 2 * n ≥ ps Hs Hsep, begin
apply pnat.le_trans,
apply pnat.max_left,
rotate 1,
apply pnat.le_trans,
apply Hn,
apply pnat.mul_le_mul_left
end,
have Hnz' : s (((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n)) ≠ 0, from
s_ne_zero_of_ge_p Hs Hsep
(show ps Hs Hsep ≤ ((ps Hs Hsep) * (ps Hs Hsep)) * ((K₂ s (s_inv Hs)) * 2 * n),
by rewrite *pnat.mul_assoc; apply pnat.mul_le_mul_right),
rewrite [(s_inv_of_sep_gt_p Hs Hsep Hp), (division_ring.one_div_one_div Hnz')],
apply rat.le_trans,
apply mul_le_mul_of_nonneg_left,
apply Hs,
apply le_of_lt,
apply rat_of_pnat_is_pos,
rewrite [left_distrib, pnat.mul_comm ((ps Hs Hsep) * (ps Hs Hsep)), *pnat.mul_assoc,
*(@pnat.inv_mul_eq_mul_inv (K₂ s (s_inv Hs))), -*mul.assoc, *pnat.inv_cancel_left,
*one_mul, -(add_halves j)],
apply add_le_add,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le_trans,
rotate 1,
apply Hn,
rotate_right 1,
apply pnat.max_right,
apply inv_ge_of_le,
apply pnat_mul_le_mul_left',
apply pnat.le_trans,
apply pnat.max_right,
rotate 1,
apply pnat.le_trans,
apply Hn,
apply pnat.mul_le_mul_right
end
protected theorem inv_mul {s : seq} (Hs : regular s) (Hsep : sep s zero) :
smul (s_inv Hs) s ≡ one :=
begin
apply equiv.trans,
rotate 3,
apply s_mul_comm,
apply rat_seq.mul_inv,
repeat (assumption | apply reg_mul_reg | apply reg_inv_reg | apply zero_is_reg)
end
theorem sep_of_equiv_sep {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t)
(Hsep : sep s zero) : sep t zero :=
begin
apply or.elim Hsep,
intro Hslt,
apply or.inl,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
intro Hslt,
apply or.inr,
rewrite ↑s_lt at *,
apply pos_of_pos_equiv,
rotate 2,
apply Hslt,
rotate_right 1,
apply add_well_defined,
rotate 5,
apply equiv.refl,
repeat (assumption | apply reg_neg_reg | apply reg_add_reg | apply zero_is_reg)
end
theorem inv_unique {s t : seq} (Hs : regular s) (Ht : regular t) (Hsep : sep s zero)
(Heq : smul s t ≡ one) : s_inv Hs ≡ t :=
begin
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_one,
rotate 1,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply equiv.refl,
apply equiv.symm,
apply Heq,
apply equiv.trans,
rotate 3,
apply equiv.symm,
apply s_mul_assoc,
rotate 3,
apply equiv.trans,
rotate 3,
apply mul_well_defined,
rotate 4,
apply rat_seq.inv_mul,
rotate 1,
apply equiv.refl,
apply s_one_mul,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg | apply one_is_reg)
end
theorem inv_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) :
s_inv Hs ≡ s_inv Ht :=
if Hsep : sep s zero then
(begin
let Hsept := sep_of_equiv_sep Hs Ht Heq Hsep,
have Hm : smul t (s_inv Hs) ≡ smul s (s_inv Hs), begin
apply mul_well_defined,
repeat (assumption | apply reg_inv_reg),
apply equiv.symm s t Heq,
apply equiv.refl
end,
apply equiv.symm,
apply inv_unique,
rotate 2,
apply equiv.trans,
rotate 3,
apply Hm,
apply rat_seq.mul_inv,
repeat (assumption | apply reg_inv_reg | apply reg_mul_reg),
apply one_is_reg
end)
else
(assert H : s_inv Hs = zero, from funext (λ n, dif_neg Hsep),
have Hsept : ¬ sep t zero, from
assume H', Hsep (sep_of_equiv_sep Ht Hs (equiv.symm _ _ Heq) H'),
assert H' : s_inv Ht = zero, from funext (λ n, dif_neg Hsept),
by rewrite [H', H]; apply equiv.refl)
theorem s_neg_neg {s : seq} : sneg (sneg s) ≡ s :=
begin
rewrite [↑equiv, ↑sneg],
intro n,
rewrite [neg_neg, algebra.sub_self, abs_zero],
apply add_invs_nonneg
end
theorem s_neg_sub {s t : seq} (Hs : regular s) (Ht : regular t) :
sneg (sadd s (sneg t)) ≡ sadd t (sneg s) :=
begin
apply equiv.trans,
rotate 3,
apply s_neg_add_eq_s_add_neg,
apply equiv.trans,
rotate 3,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply s_neg_neg,
apply s_add_comm,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_total {s t : seq} (Hs : regular s) (Ht : regular t) : s_le s t s_le t s :=
if H : s_le s t then or.inl H else or.inr begin
rewrite [↑s_le at *],
have H' : ∃ n : +, -n⁻¹ > sadd t (sneg s) n, begin
apply by_contradiction,
intro Hex,
have Hex' : ∀ n : +, -n⁻¹ ≤ sadd t (sneg s) n, begin
intro m,
apply by_contradiction,
intro Hm,
let Hm' := lt_of_not_ge Hm,
let Hex'' := exists.intro m Hm',
apply Hex Hex''
end,
apply H Hex'
end,
eapply exists.elim H',
intro m Hm,
let Hm' := neg_lt_neg Hm,
rewrite neg_neg at Hm',
apply s_nonneg_of_pos,
rotate 1,
apply pos_of_pos_equiv,
rotate 1,
apply s_neg_sub,
rotate 2,
rewrite [↑pos, ↑sneg],
existsi m,
apply Hm',
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_not_lt {s t : seq} (Hle : ¬ s_lt s t) : s_le t s :=
begin
rewrite [↑s_le, ↑nonneg, ↑s_lt at Hle, ↑pos at Hle],
let Hle' := iff.mp forall_iff_not_exists Hle,
intro n,
let Hn := neg_le_neg (le_of_not_gt (Hle' n)),
rewrite [↑sadd, ↑sneg, add_neg_eq_neg_add_rev],
apply Hn
end
theorem sep_of_nequiv {s t : seq} (Hs : regular s) (Ht : regular t) (Hneq : ¬ equiv s t) :
sep s t :=
begin
rewrite ↑sep,
apply by_contradiction,
intro Hnor,
let Hand := iff.mp !not_or_iff_not_and_not Hnor,
let Hle1 := s_le_of_not_lt (and.left Hand),
let Hle2 := s_le_of_not_lt (and.right Hand),
apply Hneq (equiv_of_le_of_ge Hs Ht Hle2 Hle1)
end
theorem s_zero_inv_equiv_zero : s_inv zero_is_reg ≡ zero :=
by rewrite s_inv_zero; apply equiv.refl
theorem lt_or_equiv_of_le {s t : seq} (Hs : regular s) (Ht : regular t) (Hle : s_le s t) :
s_lt s t s ≡ t :=
if H : s ≡ t then or.inr H else
or.inl (lt_of_le_and_sep Hs Ht (and.intro Hle (sep_of_nequiv Hs Ht H)))
theorem s_le_of_equiv_le_left {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : s ≡ t) (Hle : s_le s u) : s_le t u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply equiv.refl,
apply neg_well_defined,
apply Heq,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
theorem s_le_of_equiv_le_right {s t u : seq} (Hs : regular s) (Ht : regular t) (Hu : regular u)
(Heq : t ≡ u) (Hle : s_le s t) : s_le s u :=
begin
rewrite ↑s_le at *,
apply nonneg_of_nonneg_equiv,
rotate 2,
apply add_well_defined,
rotate 4,
apply Heq,
apply equiv.refl,
repeat (assumption | apply reg_add_reg | apply reg_neg_reg)
end
-----------------------------
noncomputable definition r_inv (s : reg_seq) : reg_seq := reg_seq.mk (s_inv (reg_seq.is_reg s))
(if H : sep (reg_seq.sq s) zero then reg_inv_reg (reg_seq.is_reg s) H else
assert Hz : s_inv (reg_seq.is_reg s) = zero, from funext (λ n, dif_neg H),
by rewrite Hz; apply zero_is_reg)
theorem r_inv_zero : requiv (r_inv r_zero) r_zero :=
s_zero_inv_equiv_zero
theorem r_inv_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_inv s) (r_inv t) :=
inv_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
theorem r_le_total (s t : reg_seq) : r_le s t r_le t s :=
s_le_total (reg_seq.is_reg s) (reg_seq.is_reg t)
theorem r_mul_inv (s : reg_seq) (Hsep : r_sep s r_zero) : requiv (s * (r_inv s)) r_one :=
rat_seq.mul_inv (reg_seq.is_reg s) Hsep
theorem r_sep_of_nequiv (s t : reg_seq) (Hneq : ¬ requiv s t) : r_sep s t :=
sep_of_nequiv (reg_seq.is_reg s) (reg_seq.is_reg t) Hneq
theorem r_lt_or_equiv_of_le (s t : reg_seq) (Hle : r_le s t) : r_lt s t requiv s t :=
lt_or_equiv_of_le (reg_seq.is_reg s) (reg_seq.is_reg t) Hle
theorem r_le_of_equiv_le_left {s t u : reg_seq} (Heq : requiv s t) (Hle : r_le s u) : r_le t u :=
s_le_of_equiv_le_left (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
theorem r_le_of_equiv_le_right {s t u : reg_seq} (Heq : requiv t u) (Hle : r_le s t) : r_le s u :=
s_le_of_equiv_le_right (reg_seq.is_reg s) (reg_seq.is_reg t) (reg_seq.is_reg u) Heq Hle
definition r_abs (s : reg_seq) : reg_seq :=
reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s))
theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) :=
abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H
end rat_seq
namespace real
open [classes] rat_seq
noncomputable protected definition inv (x : ) : :=
quot.lift_on x (λ a, quot.mk (rat_seq.r_inv a))
(λ a b H, quot.sound (rat_seq.r_inv_well_defined H))
noncomputable definition real_has_inv [instance] [reducible] [priority real.prio] : has_inv real :=
has_inv.mk real.inv
noncomputable protected definition division (x y : ) : :=
x * y⁻¹
noncomputable definition real_has_division [instance] [reducible] [priority real.prio] :
has_division real :=
has_division.mk real.division
protected theorem le_total (x y : ) : x ≤ y y ≤ x :=
quot.induction_on₂ x y (λ s t, rat_seq.r_le_total s t)
protected theorem mul_inv_cancel' (x : ) : x ≢ 0 → x * x⁻¹ = 1 :=
quot.induction_on x (λ s H, quot.sound (rat_seq.r_mul_inv s H))
protected theorem inv_mul_cancel' (x : ) : x ≢ 0 → x⁻¹ * x = 1 :=
by rewrite real.mul_comm; apply real.mul_inv_cancel'
theorem neq_of_sep {x y : } (H : x ≢ y) : ¬ x = y :=
assume Heq, !not_sep_self (Heq ▸ H)
theorem sep_of_neq {x y : } : ¬ x = y → x ≢ y :=
quot.induction_on₂ x y (λ s t H, rat_seq.r_sep_of_nequiv s t (assume Heq, H (quot.sound Heq)))
theorem sep_is_neq (x y : ) : (x ≢ y) = (¬ x = y) :=
propext (iff.intro neq_of_sep sep_of_neq)
protected theorem mul_inv_cancel (x : ) : x ≠ 0 → x * x⁻¹ = 1 :=
!sep_is_neq ▸ !real.mul_inv_cancel'
protected theorem inv_mul_cancel (x : ) : x ≠ 0 → x⁻¹ * x = 1 :=
!sep_is_neq ▸ !real.inv_mul_cancel'
protected theorem inv_zero : (0 : )⁻¹ = 0 := quot.sound (rat_seq.r_inv_zero)
protected theorem lt_or_eq_of_le (x y : ) : x ≤ y → x < y x = y :=
quot.induction_on₂ x y (λ s t H, or.elim (rat_seq.r_lt_or_equiv_of_le s t H)
(assume H1, or.inl H1)
(assume H2, or.inr (quot.sound H2)))
protected theorem le_iff_lt_or_eq (x y : ) : x ≤ y ↔ x < y x = y :=
iff.intro (real.lt_or_eq_of_le x y) (real.le_of_lt_or_eq x y)
noncomputable definition dec_lt : decidable_rel real.lt :=
begin
rewrite ↑decidable_rel,
intros,
apply prop_decidable
end
protected noncomputable definition discrete_linear_ordered_field [reducible] [trans_instance]:
algebra.discrete_linear_ordered_field :=
⦃ algebra.discrete_linear_ordered_field, real.comm_ring, real.ordered_ring,
le_total := real.le_total,
mul_inv_cancel := real.mul_inv_cancel,
inv_mul_cancel := real.inv_mul_cancel,
zero_lt_one := real.zero_lt_one,
inv_zero := real.inv_zero,
le_iff_lt_or_eq := real.le_iff_lt_or_eq,
decidable_lt := dec_lt
theorem of_rat_zero : of_rat (0:rat) = (0:real) := rfl
theorem of_rat_one : of_rat (1:rat) = (1:real) := rfl
theorem of_rat_divide (x y : ) : of_rat (x / y) = of_rat x / of_rat y :=
by_cases
(assume yz : y = 0, by krewrite [yz, algebra.div_zero, +of_rat_zero, algebra.div_zero])
(assume ynz : y ≠ 0,
have ynz' : of_rat y ≠ 0, from assume yz', ynz (of_rat.inj yz'),
!eq_div_of_mul_eq ynz' (by krewrite [-of_rat_mul, !div_mul_cancel ynz]))
open int
theorem of_int_div (x y : ) (H : (#int y x)) : of_int ((x div y)) = of_int x / of_int y :=
by rewrite [of_int_eq, rat.of_int_div H, of_rat_divide]
theorem of_nat_div (x y : ) (H : (#nat y x)) : of_nat (x div y) = of_nat x / of_nat y :=
by rewrite [of_nat_eq, rat.of_nat_div H, of_rat_divide]
/- useful for proving equalities -/
theorem eq_zero_of_nonneg_of_forall_lt {x : } (xnonneg : x ≥ 0) (H : ∀ ε : , ε > 0 → x < ε) :
x = 0 :=
decidable.by_contradiction
(suppose x ≠ 0,
have x > 0, from lt_of_le_of_ne xnonneg (ne.symm this),
have x < x, from H x this,
show false, from !lt.irrefl this)
theorem eq_zero_of_nonneg_of_forall_le {x : } (xnonneg : x ≥ 0) (H : ∀ ε : , ε > 0 → x ≤ ε) :
x = 0 :=
have ∀ ε : , ε > 0 → x < ε, from
take ε, suppose ε > 0,
assert e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
assert ε / 2 < ε, from div_two_lt_of_pos `ε > 0`,
begin apply algebra.lt_of_le_of_lt, apply H _ e2pos, apply this end,
eq_zero_of_nonneg_of_forall_lt xnonneg this
theorem eq_zero_of_forall_abs_le {x : } (H : ∀ ε : , ε > 0 → abs x ≤ ε) :
x = 0 :=
by_contradiction
(suppose x ≠ 0,
have abs x = 0, from eq_zero_of_nonneg_of_forall_le !abs_nonneg H,
show false, from `x ≠ 0` (eq_zero_of_abs_eq_zero this))
theorem eq_of_forall_abs_sub_le {x y : } (H : ∀ ε : , ε > 0 → abs (x - y) ≤ ε) :
x = y :=
have x - y = 0, from eq_zero_of_forall_abs_le H,
eq_of_sub_eq_zero this
end real