311 lines
14 KiB
Text
311 lines
14 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jeremy Avigad
|
||
|
||
Multiplicity and prime factors. We have:
|
||
|
||
mult p n := the greatest power of p dividing n if p > 1 and n > 0, and 0 otherwise.
|
||
prime_factors n := the finite set of prime factors of n, assuming n > 0
|
||
|
||
-/
|
||
import data.nat data.finset .primes
|
||
open eq.ops finset well_founded decidable nat.finset
|
||
open algebra
|
||
|
||
namespace nat
|
||
|
||
-- TODO: this should be proved more generally in ring_bigops
|
||
theorem Prod_pos {A : Type} [deceqA : decidable_eq A]
|
||
{s : finset A} {f : A → ℕ} (fpos : ∀ n, n ∈ s → f n > 0) :
|
||
(∏ n ∈ s, f n) > 0 :=
|
||
begin
|
||
induction s with a s anins ih,
|
||
{rewrite Prod_empty; exact zero_lt_one},
|
||
rewrite [!Prod_insert_of_not_mem anins],
|
||
exact (mul_pos (fpos a (mem_insert a _)) (ih (forall_of_forall_insert fpos)))
|
||
end
|
||
|
||
/- multiplicity -/
|
||
|
||
theorem mult_rec_decreasing {p n : ℕ} (Hp : p > 1) (Hn : n > 0) : n div p < n :=
|
||
have H' : n < n * p,
|
||
by rewrite [-mul_one n at {1}]; apply mul_lt_mul_of_pos_left Hp Hn,
|
||
div_lt_of_lt_mul H'
|
||
|
||
private definition mult.F (p : ℕ) (n : ℕ) (f: Π {m : ℕ}, m < n → ℕ) : ℕ :=
|
||
if H : (p > 1 ∧ n > 0) ∧ p ∣ n then
|
||
succ (f (mult_rec_decreasing (and.left (and.left H)) (and.right (and.left H))))
|
||
else 0
|
||
|
||
definition mult (p n : ℕ) : ℕ := fix (mult.F p) n
|
||
|
||
theorem mult_rec {p n : ℕ} (pgt1 : p > 1) (ngt0 : n > 0) (pdivn : p ∣ n) :
|
||
mult p n = succ (mult p (n div p)) :=
|
||
have (p > 1 ∧ n > 0) ∧ p ∣ n, from and.intro (and.intro pgt1 ngt0) pdivn,
|
||
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_pos this)
|
||
|
||
private theorem mult_base {p n : ℕ} (H : ¬ ((p > 1 ∧ n > 0) ∧ p ∣ n)) :
|
||
mult p n = 0 :=
|
||
eq.trans (well_founded.fix_eq (mult.F p) n) (dif_neg H)
|
||
|
||
theorem mult_zero_right (p : ℕ) : mult p 0 = 0 :=
|
||
mult_base (assume H, !lt.irrefl (and.right (and.left H)))
|
||
|
||
theorem mult_eq_zero_of_not_dvd {p n : ℕ} (H : ¬ p ∣ n) : mult p n = 0 :=
|
||
mult_base (assume H', H (and.right H'))
|
||
|
||
theorem mult_eq_zero_of_le_one {p : ℕ} (n : ℕ) (H : p ≤ 1) : mult p n = 0 :=
|
||
mult_base (assume H', not_lt_of_ge H (and.left (and.left H')))
|
||
|
||
theorem mult_zero_left (n : ℕ) : mult 0 n = 0 :=
|
||
mult_eq_zero_of_le_one n !dec_trivial
|
||
|
||
theorem mult_one_left (n : ℕ) : mult 1 n = 0 :=
|
||
mult_eq_zero_of_le_one n !dec_trivial
|
||
|
||
theorem mult_pos_of_dvd {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pdvdn : p ∣ n) : mult p n > 0 :=
|
||
by rewrite (mult_rec pgt1 npos pdvdn); apply succ_pos
|
||
|
||
theorem not_dvd_of_mult_eq_zero {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) (H : mult p n = 0) :
|
||
¬ p ∣ n :=
|
||
suppose p ∣ n,
|
||
ne_of_gt (mult_pos_of_dvd pgt1 npos this) H
|
||
|
||
theorem dvd_of_mult_pos {p n : ℕ} (H : mult p n > 0) : p ∣ n :=
|
||
by_contradiction (suppose ¬ p ∣ n, ne_of_gt H (mult_eq_zero_of_not_dvd this))
|
||
|
||
/- properties of mult -/
|
||
|
||
theorem mult_eq_zero_of_prime_of_ne {p q : ℕ} (primep : prime p) (primeq : prime q)
|
||
(pneq : p ≠ q) :
|
||
mult p q = 0 :=
|
||
mult_eq_zero_of_not_dvd (not_dvd_of_prime_of_coprime primep (coprime_primes primep primeq pneq))
|
||
|
||
theorem pow_mult_dvd (p n : ℕ) : p^(mult p n) ∣ n :=
|
||
begin
|
||
induction n using nat.strong_induction_on with [n, ih],
|
||
cases eq_zero_or_pos n with [nz, npos],
|
||
{rewrite nz, apply dvd_zero},
|
||
cases le_or_gt p 1 with [ple1, pgt1],
|
||
{rewrite [!mult_eq_zero_of_le_one ple1, pow_zero], apply one_dvd},
|
||
cases (or.swap (em (p ∣ n))) with [pndvdn, pdvdn],
|
||
{rewrite [mult_eq_zero_of_not_dvd pndvdn, pow_zero], apply one_dvd},
|
||
show p ^ (mult p n) ∣ n, from dvd.elim pdvdn
|
||
(take n',
|
||
suppose n = p * n',
|
||
have p > 0, from lt.trans zero_lt_one pgt1,
|
||
assert n div p = n', from !div_eq_of_eq_mul_right this `n = p * n'`,
|
||
assert n' < n,
|
||
by rewrite -this; apply mult_rec_decreasing pgt1 npos,
|
||
begin
|
||
rewrite [mult_rec pgt1 npos pdvdn, `n div p = n'`, pow_succ], subst n,
|
||
apply mul_dvd_mul !dvd.refl,
|
||
apply ih _ this
|
||
end)
|
||
end
|
||
|
||
theorem mult_one_right (p : ℕ) : mult p 1 = 0:=
|
||
assert H : p^(mult p 1) = 1, from eq_one_of_dvd_one !pow_mult_dvd,
|
||
or.elim (le_or_gt p 1)
|
||
(suppose p ≤ 1, by rewrite [!mult_eq_zero_of_le_one this])
|
||
(suppose p > 1,
|
||
by_contradiction
|
||
(suppose mult p 1 ≠ 0,
|
||
have mult p 1 > 0, from pos_of_ne_zero this,
|
||
assert p^(mult p 1) > 1, from pow_gt_one `p > 1` this,
|
||
show false, by rewrite H at this; apply !lt.irrefl this))
|
||
|
||
private theorem mult_pow_mul {p n : ℕ} (i : ℕ) (pgt1 : p > 1) (npos : n > 0) :
|
||
mult p (p^i * n) = i + mult p n :=
|
||
begin
|
||
induction i with [i, ih],
|
||
{krewrite [pow_zero, one_mul, zero_add]},
|
||
have p > 0, from lt.trans zero_lt_one pgt1,
|
||
have psin_pos : p^(succ i) * n > 0, from mul_pos (!pow_pos_of_pos this) npos,
|
||
have p ∣ p^(succ i) * n, by rewrite [pow_succ, mul.assoc]; apply dvd_mul_right,
|
||
rewrite [mult_rec pgt1 psin_pos this, pow_succ', mul.right_comm, !mul_div_cancel `p > 0`, ih],
|
||
rewrite [add.comm i, add.comm (succ i)]
|
||
end
|
||
|
||
theorem mult_pow_self {p : ℕ} (i : ℕ) (pgt1 : p > 1) : mult p (p^i) = i :=
|
||
by rewrite [-(mul_one (p^i)), mult_pow_mul i pgt1 zero_lt_one, mult_one_right]
|
||
|
||
theorem mult_self {p : ℕ} (pgt1 : p > 1) : mult p p = 1 :=
|
||
by rewrite [-pow_one p at {2}]; apply mult_pow_self 1 pgt1
|
||
|
||
theorem le_mult {p i n : ℕ} (pgt1 : p > 1) (npos : n > 0) (pidvd : p^i ∣ n) : i ≤ mult p n :=
|
||
dvd.elim pidvd
|
||
(take m,
|
||
suppose n = p^i * m,
|
||
assert m > 0, from pos_of_mul_pos_left (this ▸ npos),
|
||
by subst n; rewrite [mult_pow_mul i pgt1 this]; apply le_add_right)
|
||
|
||
theorem not_dvd_div_pow_mult {p n : ℕ} (pgt1 : p > 1) (npos : n > 0) : ¬ p ∣ n div p^(mult p n) :=
|
||
assume pdvd : p ∣ n div p^(mult p n),
|
||
obtain m (H : n div p^(mult p n) = p * m), from exists_eq_mul_right_of_dvd pdvd,
|
||
assert n = p^(succ (mult p n)) * m, from
|
||
calc
|
||
n = p^mult p n * (n div p^mult p n) : by rewrite (mul_div_cancel' !pow_mult_dvd)
|
||
... = p^(succ (mult p n)) * m : by rewrite [H, pow_succ', mul.assoc],
|
||
have p^(succ (mult p n)) ∣ n, by rewrite this at {2}; apply dvd_mul_right,
|
||
have succ (mult p n) ≤ mult p n, from le_mult pgt1 npos this,
|
||
show false, from !not_succ_le_self this
|
||
|
||
theorem mult_mul {p m n : ℕ} (primep : prime p) (mpos : m > 0) (npos : n > 0) :
|
||
mult p (m * n) = mult p m + mult p n :=
|
||
let m' := m div p^mult p m, n' := n div p^mult p n in
|
||
assert p > 1, from gt_one_of_prime primep,
|
||
assert meq : m = p^mult p m * m', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||
assert neq : n = p^mult p n * n', by rewrite (mul_div_cancel' !pow_mult_dvd),
|
||
have m'pos : m' > 0, from pos_of_mul_pos_left (meq ▸ mpos),
|
||
have n'pos : n' > 0, from pos_of_mul_pos_left (neq ▸ npos),
|
||
have npdvdm' : ¬ p ∣ m', from !not_dvd_div_pow_mult `p > 1` mpos,
|
||
have npdvdn' : ¬ p ∣ n', from !not_dvd_div_pow_mult `p > 1` npos,
|
||
assert npdvdm'n' : ¬ p ∣ m' * n', from not_dvd_mul_of_prime primep npdvdm' npdvdn',
|
||
assert m'n'pos : m' * n' > 0, from mul_pos m'pos n'pos,
|
||
assert multm'n' : mult p (m' * n') = 0, from mult_eq_zero_of_not_dvd npdvdm'n',
|
||
calc
|
||
mult p (m * n) = mult p (p^(mult p m + mult p n) * (m' * n')) :
|
||
by rewrite [pow_add, mul.right_comm, -mul.assoc, -meq, mul.assoc,
|
||
mul.comm (n div _), -neq]
|
||
... = mult p m + mult p n :
|
||
by rewrite [!mult_pow_mul `p > 1` m'n'pos, multm'n']
|
||
|
||
theorem mult_pow {p m : ℕ} (n : ℕ) (mpos : m > 0) (primep : prime p) : mult p (m^n) = n * mult p m :=
|
||
begin
|
||
induction n with n ih,
|
||
krewrite [pow_zero, mult_one_right, zero_mul],
|
||
rewrite [pow_succ, mult_mul primep mpos (!pow_pos_of_pos mpos), ih, succ_mul, add.comm]
|
||
end
|
||
|
||
theorem dvd_of_forall_prime_mult_le {m n : ℕ} (mpos : m > 0)
|
||
(H : ∀ {p}, prime p → mult p m ≤ mult p n) :
|
||
m ∣ n :=
|
||
begin
|
||
revert H, revert n,
|
||
induction m using nat.strong_induction_on with [m, ih],
|
||
cases (decidable.em (m = 1)) with [meq, mneq],
|
||
{intros, rewrite meq, apply one_dvd},
|
||
have mgt1 : m > 1, from lt_of_le_of_ne (succ_le_of_lt mpos) (ne.symm mneq),
|
||
have mge2 : m ≥ 2, from succ_le_of_lt mgt1,
|
||
have hpd : ∃ p, prime p ∧ p ∣ m, from exists_prime_and_dvd mge2,
|
||
cases hpd with [p, H1],
|
||
cases H1 with [primep, pdvdm],
|
||
intro n,
|
||
cases (eq_zero_or_pos n) with [nz, npos],
|
||
{intros; rewrite nz; apply dvd_zero},
|
||
assume H : ∀ {p : ℕ}, prime p → mult p m ≤ mult p n,
|
||
obtain m' (meq : m = p * m'), from exists_eq_mul_right_of_dvd pdvdm,
|
||
assert pgt1 : p > 1, from gt_one_of_prime primep,
|
||
assert m'pos : m' > 0, from pos_of_ne_zero
|
||
(assume m'z, by revert mpos; rewrite [meq, m'z, mul_zero]; apply not_lt_zero),
|
||
have m'ltm : m' < m,
|
||
by rewrite [meq, -one_mul m' at {1}]; apply mul_lt_mul_of_lt_of_le m'pos pgt1 !le.refl,
|
||
have multpm : mult p m ≥ 1, from le_mult pgt1 mpos (by rewrite pow_one; apply pdvdm),
|
||
have multpn : mult p n ≥ 1, from le.trans multpm (H primep),
|
||
obtain n' (neq : n = p * n'),
|
||
from exists_eq_mul_right_of_dvd (dvd_of_mult_pos (lt_of_succ_le multpn)),
|
||
assert n'pos : n' > 0, from pos_of_ne_zero
|
||
(assume n'z, by revert npos; rewrite [neq, n'z, mul_zero]; apply not_lt_zero),
|
||
have ∀q, prime q → mult q m' ≤ mult q n', from
|
||
(take q,
|
||
assume primeq : prime q,
|
||
have multqm : mult q m = mult q p + mult q m',
|
||
by rewrite [meq, mult_mul primeq (pos_of_prime primep) m'pos],
|
||
have multqn : mult q n = mult q p + mult q n',
|
||
by rewrite [neq, mult_mul primeq (pos_of_prime primep) n'pos],
|
||
show mult q m' ≤ mult q n', from le_of_add_le_add_left (multqm ▸ multqn ▸ H primeq)),
|
||
assert m'dvdn' : m' ∣ n', from ih m' m'ltm m'pos n' this,
|
||
show m ∣ n, by rewrite [meq, neq]; apply mul_dvd_mul !dvd.refl m'dvdn'
|
||
end
|
||
|
||
theorem eq_of_forall_prime_mult_eq {m n : ℕ} (mpos : m > 0) (npos : n > 0)
|
||
(H : ∀ p, prime p → mult p m = mult p n) : m = n :=
|
||
dvd.antisymm
|
||
(dvd_of_forall_prime_mult_le mpos (take p, assume primep, H _ primep ▸ !le.refl))
|
||
(dvd_of_forall_prime_mult_le npos (take p, assume primep, H _ primep ▸ !le.refl))
|
||
|
||
/- prime factors -/
|
||
|
||
definition prime_factors (n : ℕ) : finset ℕ := { p ∈ upto (succ n) | prime p ∧ p ∣ n }
|
||
|
||
theorem prime_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : prime p :=
|
||
and.left (of_mem_sep H)
|
||
|
||
theorem dvd_of_mem_prime_factors {p n : ℕ} (H : p ∈ prime_factors n) : p ∣ n :=
|
||
and.right (of_mem_sep H)
|
||
|
||
theorem mem_prime_factors {p n : ℕ} (npos : n > 0) (primep : prime p) (pdvdn : p ∣ n) :
|
||
p ∈ prime_factors n :=
|
||
have plen : p ≤ n, from le_of_dvd npos pdvdn,
|
||
mem_sep_of_mem (mem_upto_of_lt (lt_succ_of_le plen)) (and.intro primep pdvdn)
|
||
|
||
/- prime factorization -/
|
||
|
||
theorem mult_pow_eq_zero_of_prime_of_ne {p q : ℕ} (primep : prime p) (primeq : prime q)
|
||
(pneq : p ≠ q) (i : ℕ) : mult p (q^i) = 0 :=
|
||
begin
|
||
induction i with i ih,
|
||
{rewrite [pow_zero, mult_one_right]},
|
||
have qpos : q > 0, from pos_of_prime primeq,
|
||
have qipos : q^i > 0, from !pow_pos_of_pos qpos,
|
||
rewrite [pow_succ', mult_mul primep qipos qpos, ih, mult_eq_zero_of_prime_of_ne primep primeq pneq]
|
||
end
|
||
|
||
theorem mult_prod_pow_of_not_mem {p : ℕ} (primep : prime p) {s : finset ℕ}
|
||
(sprimes : ∀ p, p ∈ s → prime p) (f : ℕ → ℕ) (pns : p ∉ s) :
|
||
mult p (∏ q ∈ s, q^(f q)) = 0 :=
|
||
begin
|
||
induction s with a s anins ih,
|
||
{rewrite [Prod_empty, mult_one_right]},
|
||
have pnea : p ≠ a, from assume peqa, by rewrite peqa at pns; exact pns !mem_insert,
|
||
have primea : prime a, from sprimes a !mem_insert,
|
||
have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea),
|
||
have prodpos : (∏ q ∈ s, q ^ f q) > 0,
|
||
from Prod_pos (take q, assume qs,
|
||
!pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))),
|
||
rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos],
|
||
rewrite (mult_pow_eq_zero_of_prime_of_ne primep primea pnea),
|
||
rewrite (ih (forall_of_forall_insert sprimes) (λ H, pns (!mem_insert_of_mem H)))
|
||
end
|
||
|
||
theorem mult_prod_pow_of_mem {p : ℕ} (primep : prime p) {s : finset ℕ}
|
||
(sprimes : ∀ p, p ∈ s → prime p) (f : ℕ → ℕ) (ps : p ∈ s) :
|
||
mult p (∏ q ∈ s, q^(f q)) = f p :=
|
||
begin
|
||
induction s with a s anins ih,
|
||
{exact absurd ps !not_mem_empty},
|
||
have primea : prime a, from sprimes a !mem_insert,
|
||
have afapos : a ^ f a > 0, from !pow_pos_of_pos (pos_of_prime primea),
|
||
have prodpos : (∏ q ∈ s, q ^ f q) > 0,
|
||
from Prod_pos (take q, assume qs,
|
||
!pow_pos_of_pos (pos_of_prime (forall_of_forall_insert sprimes q qs))),
|
||
rewrite [!Prod_insert_of_not_mem anins, mult_mul primep afapos prodpos],
|
||
cases eq_or_mem_of_mem_insert ps with peqa pins,
|
||
{rewrite [peqa, !mult_pow_self (gt_one_of_prime primea)],
|
||
rewrite [mult_prod_pow_of_not_mem primea (forall_of_forall_insert sprimes) _ anins]},
|
||
have pnea : p ≠ a, from by intro peqa; rewrite peqa at pins; exact anins pins,
|
||
rewrite [mult_pow_eq_zero_of_prime_of_ne primep primea pnea, zero_add],
|
||
exact (ih (forall_of_forall_insert sprimes) pins)
|
||
end
|
||
|
||
theorem eq_prime_factorization {n : ℕ} (npos : n > 0) :
|
||
n = (∏ p ∈ prime_factors n, p^(mult p n)) :=
|
||
let nprod := ∏ p ∈ prime_factors n, p^(mult p n) in
|
||
assert primefactors : ∀ p, p ∈ prime_factors n → prime p,
|
||
from take p, @prime_of_mem_prime_factors p n,
|
||
have prodpos : (∏ q ∈ prime_factors n, q^(mult q n)) > 0,
|
||
from Prod_pos (take q, assume qpf,
|
||
!pow_pos_of_pos (pos_of_prime (prime_of_mem_prime_factors qpf))),
|
||
eq_of_forall_prime_mult_eq npos prodpos
|
||
(take p,
|
||
assume primep,
|
||
decidable.by_cases
|
||
(assume pprimefactors : p ∈ prime_factors n,
|
||
eq.symm (mult_prod_pow_of_mem primep primefactors (λ p, mult p n) pprimefactors))
|
||
(assume pnprimefactors : p ∉ prime_factors n,
|
||
have ¬ p ∣ n, from assume H, pnprimefactors (mem_prime_factors npos primep H),
|
||
assert mult p n = 0, from mult_eq_zero_of_not_dvd this,
|
||
by rewrite [this, mult_prod_pow_of_not_mem primep primefactors _ pnprimefactors]))
|
||
end nat
|