88c659c54e
We use this option to erase proofs when generating the javascript version. The proofs are erased to minimize the size of the file that must be downloaded by users
650 lines
22 KiB
Text
650 lines
22 KiB
Text
/-
|
||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn
|
||
-/
|
||
prelude
|
||
import init.datatypes init.reserved_notation
|
||
|
||
/- implication -/
|
||
|
||
definition implies (a b : Prop) := a → b
|
||
|
||
lemma implies.trans [trans] {p q r : Prop} (h₁ : implies p q) (h₂ : implies q r) : implies p r :=
|
||
assume hp, h₂ (h₁ hp)
|
||
|
||
definition trivial := true.intro
|
||
|
||
definition not (a : Prop) := a → false
|
||
prefix `¬` := not
|
||
|
||
definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b :=
|
||
false.rec b (H2 H1)
|
||
|
||
/- not -/
|
||
|
||
theorem not_false : ¬false :=
|
||
assume H : false, H
|
||
|
||
definition non_contradictory (a : Prop) : Prop := ¬¬a
|
||
|
||
theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a :=
|
||
assume Hna : ¬a, absurd Ha Hna
|
||
|
||
/- eq -/
|
||
|
||
notation a = b := eq a b
|
||
definition rfl {A : Type} {a : A} : a = a := eq.refl a
|
||
|
||
-- proof irrelevance is built in
|
||
theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ :=
|
||
rfl
|
||
|
||
-- Remark: we provide the universe levels explicitly to make sure `eq.drec` has the same type of `eq.rec` in the HoTT library
|
||
protected theorem eq.drec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : Π (x : A), a = x → Type.{l₁}} (h₁ : C a (eq.refl a)) {b : A} (h₂ : a = b) : C b h₂ :=
|
||
eq.rec (λh₂ : a = a, show C a h₂, from h₁) h₂ h₂
|
||
|
||
namespace eq
|
||
variables {A : Type}
|
||
variables {a b c a': A}
|
||
|
||
protected theorem drec_on {a : A} {C : Π (x : A), a = x → Type} {b : A} (h₂ : a = b) (h₁ : C a (refl a)) : C b h₂ :=
|
||
eq.drec h₁ h₂
|
||
|
||
theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b :=
|
||
eq.rec H₂ H₁
|
||
|
||
theorem trans (H₁ : a = b) (H₂ : b = c) : a = c :=
|
||
subst H₂ H₁
|
||
|
||
theorem symm : a = b → b = a :=
|
||
eq.rec (refl a)
|
||
|
||
theorem substr {P : A → Prop} (H₁ : b = a) : P a → P b :=
|
||
subst (symm H₁)
|
||
|
||
namespace ops
|
||
notation H `⁻¹` := symm H --input with \sy or \-1 or \inv
|
||
notation H1 ⬝ H2 := trans H1 H2
|
||
notation H1 ▸ H2 := subst H1 H2
|
||
notation H1 ▹ H2 := eq.rec H2 H1
|
||
end ops
|
||
end eq
|
||
|
||
theorem congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ :=
|
||
eq.subst H₁ (eq.subst H₂ rfl)
|
||
|
||
theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a :=
|
||
eq.subst H (eq.refl (f a))
|
||
|
||
theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) : a₁ = a₂ → f a₁ = f a₂ :=
|
||
congr rfl
|
||
|
||
section
|
||
variables {A : Type} {a b c: A}
|
||
open eq.ops
|
||
|
||
theorem trans_rel_left (R : A → A → Prop) (H₁ : R a b) (H₂ : b = c) : R a c :=
|
||
H₂ ▸ H₁
|
||
|
||
theorem trans_rel_right (R : A → A → Prop) (H₁ : a = b) (H₂ : R b c) : R a c :=
|
||
H₁⁻¹ ▸ H₂
|
||
end
|
||
|
||
section
|
||
variable {p : Prop}
|
||
open eq.ops
|
||
|
||
theorem of_eq_true (H : p = true) : p :=
|
||
H⁻¹ ▸ trivial
|
||
|
||
theorem not_of_eq_false (H : p = false) : ¬p :=
|
||
assume Hp, H ▸ Hp
|
||
end
|
||
|
||
attribute eq.subst [subst]
|
||
attribute eq.refl [refl]
|
||
attribute eq.trans [trans]
|
||
attribute eq.symm [symm]
|
||
|
||
/- ne -/
|
||
|
||
definition ne {A : Type} (a b : A) := ¬(a = b)
|
||
notation a ≠ b := ne a b
|
||
|
||
namespace ne
|
||
open eq.ops
|
||
variable {A : Type}
|
||
variables {a b : A}
|
||
|
||
theorem intro (H : a = b → false) : a ≠ b := H
|
||
|
||
theorem elim (H : a ≠ b) : a = b → false := H
|
||
|
||
theorem irrefl (H : a ≠ a) : false := H rfl
|
||
|
||
theorem symm (H : a ≠ b) : b ≠ a :=
|
||
assume (H₁ : b = a), H (H₁⁻¹)
|
||
end ne
|
||
|
||
theorem false.of_ne {A : Type} {a : A} : a ≠ a → false := ne.irrefl
|
||
|
||
infixl `==`:50 := heq
|
||
|
||
namespace heq
|
||
universe variable u
|
||
variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C}
|
||
|
||
theorem to_eq (H : a == a') : a = a' :=
|
||
have H₁ : ∀ (Ht : A = A), eq.rec a Ht = a, from
|
||
λ Ht, eq.refl a,
|
||
heq.rec H₁ H (eq.refl A)
|
||
|
||
theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b)
|
||
: P a → P b := eq.rec_on (to_eq H₁)
|
||
|
||
theorem subst {P : ∀T : Type, T → Prop} : a == b → P A a → P B b :=
|
||
heq.rec_on
|
||
|
||
theorem symm (H : a == b) : b == a :=
|
||
heq.rec_on H (refl a)
|
||
|
||
theorem of_eq (H : a = a') : a == a' :=
|
||
eq.subst H (refl a)
|
||
|
||
theorem trans (H₁ : a == b) (H₂ : b == c) : a == c :=
|
||
subst H₂ H₁
|
||
|
||
theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' :=
|
||
trans H₁ (of_eq H₂)
|
||
|
||
theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b :=
|
||
trans (of_eq H₁) H₂
|
||
|
||
definition type_eq (H : a == b) : A = B :=
|
||
heq.rec_on H (eq.refl A)
|
||
end heq
|
||
|
||
open eq.ops
|
||
theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : H ▹ p == p :=
|
||
eq.drec_on H !heq.refl
|
||
|
||
theorem heq_of_eq_rec_left {A : Type} {P : A → Type} : ∀ {a a' : A} {p₁ : P a} {p₂ : P a'} (e : a = a') (h₂ : e ▹ p₁ = p₂), p₁ == p₂
|
||
| a a p₁ p₂ (eq.refl a) h := eq.rec_on h !heq.refl
|
||
|
||
theorem heq_of_eq_rec_right {A : Type} {P : A → Type} : ∀ {a a' : A} {p₁ : P a} {p₂ : P a'} (e : a' = a) (h₂ : p₁ = e ▹ p₂), p₁ == p₂
|
||
| a a p₁ p₂ (eq.refl a) h := eq.rec_on h !heq.refl
|
||
|
||
theorem of_heq_true {a : Prop} (H : a == true) : a :=
|
||
of_eq_true (heq.to_eq H)
|
||
|
||
theorem eq_rec_compose : ∀ {A B C : Type} (p₁ : B = C) (p₂ : A = B) (a : A), p₁ ▹ (p₂ ▹ a : B) = (p₂ ⬝ p₁) ▹ a
|
||
| A A A (eq.refl A) (eq.refl A) a := calc
|
||
eq.refl A ▹ eq.refl A ▹ a = eq.refl A ▹ a : rfl
|
||
... = (eq.refl A ⬝ eq.refl A) ▹ a : {proof_irrel (eq.refl A) (eq.refl A ⬝ eq.refl A)}
|
||
|
||
theorem eq_rec_eq_eq_rec {A₁ A₂ : Type} {p : A₁ = A₂} : ∀ {a₁ : A₁} {a₂ : A₂}, p ▹ a₁ = a₂ → a₁ = p⁻¹ ▹ a₂ :=
|
||
eq.drec_on p (λ a₁ a₂ h, eq.drec_on h rfl)
|
||
|
||
theorem eq_rec_of_heq_left : ∀ {A₁ A₂ : Type} {a₁ : A₁} {a₂ : A₂} (h : a₁ == a₂), heq.type_eq h ▹ a₁ = a₂
|
||
| A A a a (heq.refl a) := rfl
|
||
|
||
theorem eq_rec_of_heq_right {A₁ A₂ : Type} {a₁ : A₁} {a₂ : A₂} (h : a₁ == a₂) : a₁ = (heq.type_eq h)⁻¹ ▹ a₂ :=
|
||
eq_rec_eq_eq_rec (eq_rec_of_heq_left h)
|
||
|
||
attribute heq.refl [refl]
|
||
attribute heq.trans [trans]
|
||
attribute heq.of_heq_of_eq [trans]
|
||
attribute heq.of_eq_of_heq [trans]
|
||
attribute heq.symm [symm]
|
||
|
||
/- and -/
|
||
|
||
notation a /\ b := and a b
|
||
notation a ∧ b := and a b
|
||
|
||
variables {a b c d : Prop}
|
||
|
||
theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c :=
|
||
and.rec H₂ H₁
|
||
|
||
/- or -/
|
||
|
||
notation a `\/` b := or a b
|
||
notation a ∨ b := or a b
|
||
|
||
namespace or
|
||
theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c :=
|
||
or.rec H₂ H₃ H₁
|
||
end or
|
||
|
||
theorem non_contradictory_em (a : Prop) : ¬¬(a ∨ ¬a) :=
|
||
assume not_em : ¬(a ∨ ¬a),
|
||
have neg_a : ¬a, from
|
||
assume pos_a : a, absurd (or.inl pos_a) not_em,
|
||
absurd (or.inr neg_a) not_em
|
||
|
||
/- iff -/
|
||
|
||
definition iff (a b : Prop) := (a → b) ∧ (b → a)
|
||
|
||
notation a <-> b := iff a b
|
||
notation a ↔ b := iff a b
|
||
|
||
namespace iff
|
||
theorem intro : (a → b) → (b → a) → (a ↔ b) := and.intro
|
||
|
||
theorem elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := and.rec
|
||
|
||
theorem elim_left : (a ↔ b) → a → b := and.left
|
||
|
||
definition mp := @elim_left
|
||
|
||
theorem elim_right : (a ↔ b) → b → a := and.right
|
||
|
||
definition mpr := @elim_right
|
||
|
||
theorem refl (a : Prop) : a ↔ a :=
|
||
intro (assume H, H) (assume H, H)
|
||
|
||
theorem rfl {a : Prop} : a ↔ a :=
|
||
refl a
|
||
|
||
theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c :=
|
||
intro
|
||
(assume Ha, mp H₂ (mp H₁ Ha))
|
||
(assume Hc, mpr H₁ (mpr H₂ Hc))
|
||
|
||
theorem symm (H : a ↔ b) : b ↔ a :=
|
||
intro (elim_right H) (elim_left H)
|
||
|
||
theorem comm : (a ↔ b) ↔ (b ↔ a) :=
|
||
intro symm symm
|
||
|
||
open eq.ops
|
||
theorem of_eq {a b : Prop} (H : a = b) : a ↔ b :=
|
||
H ▸ rfl
|
||
end iff
|
||
|
||
theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b :=
|
||
iff.intro
|
||
(assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb))
|
||
(assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha))
|
||
|
||
theorem of_iff_true (H : a ↔ true) : a :=
|
||
iff.mp (iff.symm H) trivial
|
||
|
||
theorem not_of_iff_false : (a ↔ false) → ¬a := iff.mp
|
||
|
||
theorem iff_true_intro (H : a) : a ↔ true :=
|
||
iff.intro
|
||
(λ Hl, trivial)
|
||
(λ Hr, H)
|
||
|
||
theorem iff_false_intro (H : ¬a) : a ↔ false :=
|
||
iff.intro H !false.rec
|
||
|
||
theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a :=
|
||
iff.intro
|
||
(λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha))
|
||
absurd
|
||
|
||
attribute iff.refl [refl]
|
||
attribute iff.symm [symm]
|
||
attribute iff.trans [trans]
|
||
|
||
inductive Exists {A : Type} (P : A → Prop) : Prop :=
|
||
intro : ∀ (a : A), P a → Exists P
|
||
|
||
definition exists.intro := @Exists.intro
|
||
|
||
notation `exists` binders `,` r:(scoped P, Exists P) := r
|
||
notation `∃` binders `,` r:(scoped P, Exists P) := r
|
||
|
||
theorem exists.elim {A : Type} {p : A → Prop} {B : Prop}
|
||
(H1 : ∃x, p x) (H2 : ∀ (a : A), p a → B) : B :=
|
||
Exists.rec H2 H1
|
||
|
||
/- decidable -/
|
||
|
||
inductive decidable [class] (p : Prop) : Type :=
|
||
| inl : p → decidable p
|
||
| inr : ¬p → decidable p
|
||
|
||
definition decidable_true [instance] : decidable true :=
|
||
decidable.inl trivial
|
||
|
||
definition decidable_false [instance] : decidable false :=
|
||
decidable.inr not_false
|
||
|
||
-- We use "dependent" if-then-else to be able to communicate the if-then-else condition
|
||
-- to the branches
|
||
definition dite (c : Prop) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A :=
|
||
decidable.rec_on H
|
||
|
||
/- if-then-else -/
|
||
|
||
definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A :=
|
||
decidable.rec_on H (λ Hc, t) (λ Hnc, e)
|
||
|
||
namespace decidable
|
||
variables {p q : Prop}
|
||
|
||
definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3)
|
||
: decidable.rec_on H H1 H2 :=
|
||
decidable.rec_on H (λh, H4) (λh, !false.rec (h H3))
|
||
|
||
definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3)
|
||
: decidable.rec_on H H1 H2 :=
|
||
decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4)
|
||
|
||
definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite
|
||
|
||
theorem em (p : Prop) [H : decidable p] : p ∨ ¬p := by_cases or.inl or.inr
|
||
|
||
theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p :=
|
||
if H1 : p then H1 else false.rec _ (H H1)
|
||
end decidable
|
||
|
||
section
|
||
variables {p q : Prop}
|
||
open decidable
|
||
definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q :=
|
||
if Hp : p then inl (iff.mp H Hp)
|
||
else inr (iff.mp (not_iff_not_of_iff H) Hp)
|
||
|
||
definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q :=
|
||
decidable_of_decidable_of_iff Hp (iff.of_eq H)
|
||
|
||
protected definition or.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type}
|
||
(h : p ∨ q) (h₁ : p → A) (h₂ : q → A) : A :=
|
||
if hp : p then h₁ hp else
|
||
if hq : q then h₂ hq else
|
||
false.rec _ (or.elim h hp hq)
|
||
end
|
||
|
||
section
|
||
variables {p q : Prop}
|
||
open decidable (rec_on inl inr)
|
||
|
||
definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) :=
|
||
if hp : p then
|
||
if hq : q then inl (and.intro hp hq)
|
||
else inr (assume H : p ∧ q, hq (and.right H))
|
||
else inr (assume H : p ∧ q, hp (and.left H))
|
||
|
||
definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) :=
|
||
if hp : p then inl (or.inl hp) else
|
||
if hq : q then inl (or.inr hq) else
|
||
inr (or.rec hp hq)
|
||
|
||
definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) :=
|
||
if hp : p then inr (absurd hp) else inl hp
|
||
|
||
definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) :=
|
||
if hp : p then
|
||
if hq : q then inl (assume H, hq)
|
||
else inr (assume H : p → q, absurd (H hp) hq)
|
||
else inl (assume Hp, absurd Hp hp)
|
||
|
||
definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) :=
|
||
decidable_and
|
||
|
||
end
|
||
|
||
definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a)
|
||
definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b)
|
||
definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A)
|
||
definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) :=
|
||
decidable_implies
|
||
|
||
namespace bool
|
||
theorem ff_ne_tt : ff = tt → false
|
||
| [none]
|
||
end bool
|
||
|
||
open bool
|
||
definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y
|
||
definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt
|
||
|
||
open decidable
|
||
protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b)
|
||
| ff ff := inl rfl
|
||
| ff tt := inr ff_ne_tt
|
||
| tt ff := inr (ne.symm ff_ne_tt)
|
||
| tt tt := inl rfl
|
||
|
||
definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A :=
|
||
take x y : A, if Hp : p x y = tt then inl (H₁ Hp)
|
||
else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y))
|
||
|
||
theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) :=
|
||
match H a a with
|
||
| inl e := rfl
|
||
| inr n := absurd rfl n
|
||
end
|
||
|
||
open eq.ops
|
||
theorem decidable_eq_inr_neg {A : Type} [H : decidable_eq A] {a b : A} : Π n : a ≠ b, H a b = inr n :=
|
||
assume n,
|
||
match H a b with
|
||
| inl e := absurd e n
|
||
| inr n₁ := proof_irrel n n₁ ▸ rfl
|
||
end
|
||
|
||
/- inhabited -/
|
||
|
||
inductive inhabited [class] (A : Type) : Type :=
|
||
mk : A → inhabited A
|
||
|
||
protected definition inhabited.value {A : Type} : inhabited A → A :=
|
||
inhabited.rec (λa, a)
|
||
|
||
protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B :=
|
||
inhabited.rec H2 H1
|
||
|
||
definition default (A : Type) [H : inhabited A] : A :=
|
||
inhabited.value H
|
||
|
||
definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A :=
|
||
inhabited.value H
|
||
|
||
definition Prop.is_inhabited [instance] : inhabited Prop :=
|
||
inhabited.mk true
|
||
|
||
definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) :=
|
||
inhabited.rec_on H (λb, inhabited.mk (λa, b))
|
||
|
||
definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] :
|
||
inhabited (Πx, B x) :=
|
||
inhabited.mk (λa, !default)
|
||
|
||
protected definition bool.is_inhabited [instance] : inhabited bool :=
|
||
inhabited.mk ff
|
||
|
||
inductive nonempty [class] (A : Type) : Prop :=
|
||
intro : A → nonempty A
|
||
|
||
protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B :=
|
||
nonempty.rec H2 H1
|
||
|
||
theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A :=
|
||
nonempty.intro !default
|
||
|
||
/- subsingleton -/
|
||
|
||
inductive subsingleton [class] (A : Type) : Prop :=
|
||
intro : (∀ a b : A, a = b) → subsingleton A
|
||
|
||
protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b :=
|
||
subsingleton.rec (λp, p) H
|
||
|
||
definition subsingleton_prop [instance] (p : Prop) : subsingleton p :=
|
||
subsingleton.intro (λa b, !proof_irrel)
|
||
|
||
definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) :=
|
||
subsingleton.intro (λ d₁,
|
||
match d₁ with
|
||
| inl t₁ := (λ d₂,
|
||
match d₂ with
|
||
| inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl
|
||
| inr f₂ := absurd t₁ f₂
|
||
end)
|
||
| inr f₁ := (λ d₂,
|
||
match d₂ with
|
||
| inl t₂ := absurd t₂ f₁
|
||
| inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl
|
||
end)
|
||
end)
|
||
|
||
protected theorem rec_subsingleton {p : Prop} [H : decidable p]
|
||
{H1 : p → Type} {H2 : ¬p → Type}
|
||
[H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)]
|
||
: subsingleton (decidable.rec_on H H1 H2) :=
|
||
decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases"
|
||
|
||
theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t))
|
||
(λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t))
|
||
H
|
||
|
||
theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : ite c t e) : c → t :=
|
||
assume Hc, eq.rec_on (if_pos Hc) h
|
||
|
||
theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : ite c t e) : ¬c → e :=
|
||
assume Hnc, eq.rec_on (if_neg Hnc) h
|
||
|
||
theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||
{x y u v : A}
|
||
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
|
||
ite b x y = ite c u v :=
|
||
decidable.rec_on dec_b
|
||
(λ hp : b, calc
|
||
ite b x y = x : if_pos hp
|
||
... = u : h_t (iff.mp h_c hp)
|
||
... = ite c u v : if_pos (iff.mp h_c hp))
|
||
(λ hn : ¬b, calc
|
||
ite b x y = y : if_neg hn
|
||
... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
|
||
... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn))
|
||
|
||
theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||
{x y u v : A}
|
||
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
|
||
ite b x y = ite c u v :=
|
||
@if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e)
|
||
|
||
theorem if_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||
(h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) :
|
||
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||
@if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e
|
||
|
||
theorem if_simp_congr [congr] {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A}
|
||
(h_c : b ↔ c) (h_t : x = u) (h_e : y = v) :
|
||
ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||
@if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e)
|
||
|
||
theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
|
||
ite b x y ↔ ite c u v :=
|
||
decidable.rec_on dec_b
|
||
(λ hp : b, calc
|
||
ite b x y ↔ x : iff.of_eq (if_pos hp)
|
||
... ↔ u : h_t (iff.mp h_c hp)
|
||
... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp)))
|
||
(λ hn : ¬b, calc
|
||
ite b x y ↔ y : iff.of_eq (if_neg hn)
|
||
... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn)
|
||
... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn)))
|
||
|
||
theorem if_ctx_simp_congr_prop {b c x y u v : Prop} [dec_b : decidable b]
|
||
(h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) :
|
||
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||
@if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e
|
||
|
||
theorem if_simp_congr_prop [congr] {b c x y u v : Prop} [dec_b : decidable b]
|
||
(h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) :
|
||
ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) :=
|
||
@if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e)
|
||
|
||
theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = t Hc :=
|
||
decidable.rec
|
||
(λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e))
|
||
(λ Hnc : ¬c, absurd Hc Hnc)
|
||
H
|
||
|
||
theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = e Hnc :=
|
||
decidable.rec
|
||
(λ Hc : c, absurd Hc Hnc)
|
||
(λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e))
|
||
H
|
||
|
||
theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c]
|
||
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
|
||
(h_c : b ↔ c)
|
||
(h_t : ∀ (h : c), x (iff.mpr h_c h) = u h)
|
||
(h_e : ∀ (h : ¬c), y (iff.mpr (not_iff_not_of_iff h_c) h) = v h) :
|
||
(@dite b dec_b A x y) = (@dite c dec_c A u v) :=
|
||
decidable.rec_on dec_b
|
||
(λ hp : b, calc
|
||
dite b x y = x hp : dif_pos hp
|
||
... = x (iff.mpr h_c (iff.mp h_c hp)) : proof_irrel
|
||
... = u (iff.mp h_c hp) : h_t
|
||
... = dite c u v : dif_pos (iff.mp h_c hp))
|
||
(λ hn : ¬b, let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in calc
|
||
dite b x y = y hn : dif_neg hn
|
||
... = y (iff.mpr h_nc (iff.mp h_nc hn)) : proof_irrel
|
||
... = v (iff.mp h_nc hn) : h_e
|
||
... = dite c u v : dif_neg (iff.mp h_nc hn))
|
||
|
||
theorem dif_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b]
|
||
{x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A}
|
||
(h_c : b ↔ c)
|
||
(h_t : ∀ (h : c), x (iff.mpr h_c h) = u h)
|
||
(h_e : ∀ (h : ¬c), y (iff.mpr (not_iff_not_of_iff h_c) h) = v h) :
|
||
(@dite b dec_b A x y) = (@dite c (decidable_of_decidable_of_iff dec_b h_c) A u v) :=
|
||
@dif_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x u y v h_c h_t h_e
|
||
|
||
-- Remark: dite and ite are "definitionally equal" when we ignore the proofs.
|
||
theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e :=
|
||
rfl
|
||
|
||
definition is_true (c : Prop) [H : decidable c] : Prop :=
|
||
if c then true else false
|
||
|
||
definition is_false (c : Prop) [H : decidable c] : Prop :=
|
||
if c then false else true
|
||
|
||
definition of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c :=
|
||
decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂))
|
||
|
||
notation `dec_trivial` := of_is_true trivial
|
||
|
||
theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c :=
|
||
if Hc : c then absurd trivial (if_pos Hc ▸ H₂) else Hc
|
||
|
||
theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c :=
|
||
if Hc : c then !false.rec (if_pos Hc ▸ H₂) else Hc
|
||
|
||
theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c :=
|
||
if Hc : c then Hc else absurd trivial (if_neg Hc ▸ H₂)
|
||
|
||
-- namespace used to collect congruence rules for "contextual simplification"
|
||
namespace contextual
|
||
attribute if_ctx_simp_congr [congr]
|
||
attribute if_ctx_simp_congr_prop [congr]
|
||
attribute dif_ctx_simp_congr [congr]
|
||
end contextual
|