lean2/library/algebra/field.lean
Leonardo de Moura b35abcc6a8 refactor(library): rename strategy "msimp" ==> "inst_simp"
"inst_simp" means "instantiate simplification lemmas"
The idea is to make it clear that this strategy is *not* a simplifier.
2015-12-31 12:45:48 -08:00

504 lines
20 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis
Structures with multiplicative and additive components, including division rings and fields.
The development is modeled after Isabelle's library.
-/
import logic.eq logic.connectives data.unit data.sigma data.prod
import algebra.binary algebra.group algebra.ring
open eq eq.ops
variable {A : Type}
structure division_ring [class] (A : Type) extends ring A, has_inv A, zero_ne_one_class A :=
(mul_inv_cancel : ∀{a}, a ≠ zero → mul a (inv a) = one)
(inv_mul_cancel : ∀{a}, a ≠ zero → mul (inv a) a = one)
section division_ring
variables [s : division_ring A] {a b c : A}
include s
protected definition algebra.div (a b : A) : A := a * b⁻¹
definition division_ring_has_div [reducible] [instance] : has_div A :=
has_div.mk algebra.div
lemma division.def [simp] (a b : A) : a / b = a * b⁻¹ :=
rfl
theorem mul_inv_cancel [simp] (H : a ≠ 0) : a * a⁻¹ = 1 :=
division_ring.mul_inv_cancel H
theorem inv_mul_cancel [simp] (H : a ≠ 0) : a⁻¹ * a = 1 :=
division_ring.inv_mul_cancel H
theorem inv_eq_one_div (a : A) : a⁻¹ = 1 / a := !one_mul⁻¹
theorem div_eq_mul_one_div (a b : A) : a / b = a * (1 / b) :=
by simp
theorem mul_one_div_cancel [simp] (H : a ≠ 0) : a * (1 / a) = 1 :=
by simp
theorem one_div_mul_cancel [simp] (H : a ≠ 0) : (1 / a) * a = 1 :=
by simp
theorem div_self [simp] (H : a ≠ 0) : a / a = 1 :=
by simp
theorem one_div_one [simp] : 1 / 1 = (1:A) :=
div_self (ne.symm zero_ne_one)
theorem mul_div_assoc (a b : A) : (a * b) / c = a * (b / c) :=
by simp
theorem one_div_ne_zero (H : a ≠ 0) : 1 / a ≠ 0 :=
assume H2 : 1 / a = 0,
have C1 : 0 = (1:A), from symm (by rewrite [-(mul_one_div_cancel H), H2, mul_zero]),
absurd C1 zero_ne_one
theorem one_inv_eq [simp] : 1⁻¹ = (1:A) :=
by rewrite [-mul_one, inv_mul_cancel (ne.symm (@zero_ne_one A _))]
theorem div_one [simp] (a : A) : a / 1 = a :=
by simp
theorem zero_div [simp] (a : A) : 0 / a = 0 :=
by simp
-- note: integral domain has a "mul_ne_zero". A commutative division ring is an integral
-- domain, but let's not define that class for now.
theorem division_ring.mul_ne_zero (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 :=
assume H : a * b = 0,
have C1 : a = 0, by rewrite [-mul_one, -(mul_one_div_cancel Hb), -mul.assoc, H, zero_mul],
absurd C1 Ha
theorem mul_ne_zero_comm (H : a * b ≠ 0) : b * a ≠ 0 :=
have H2 : a ≠ 0 ∧ b ≠ 0, from ne_zero_and_ne_zero_of_mul_ne_zero H,
division_ring.mul_ne_zero (and.right H2) (and.left H2)
theorem eq_one_div_of_mul_eq_one (H : a * b = 1) : b = 1 / a :=
assert a ≠ 0, from
suppose a = 0,
have 0 = (1:A), by inst_simp,
absurd this zero_ne_one,
by inst_simp
theorem eq_one_div_of_mul_eq_one_left (H : b * a = 1) : b = 1 / a :=
assert a ≠ 0, from
suppose a = 0,
have 0 = (1:A), by inst_simp,
absurd this zero_ne_one,
by inst_simp
theorem division_ring.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (1 / b) = 1 / (b * a) :=
have (b * a) * ((1 / a) * (1 / b)) = 1, by inst_simp,
eq_one_div_of_mul_eq_one this
theorem one_div_neg_one_eq_neg_one : (1:A) / (-1) = -1 :=
have (-1) * (-1) = (1:A), by inst_simp,
symm (eq_one_div_of_mul_eq_one this)
theorem division_ring.one_div_neg_eq_neg_one_div (H : a ≠ 0) : 1 / (- a) = - (1 / a) :=
have -1 ≠ 0, from
(suppose -1 = 0, absurd (symm (calc
1 = -(-1) : neg_neg
... = -0 : this
... = (0:A) : neg_zero)) zero_ne_one),
calc
1 / (- a) = 1 / ((-1) * a) : neg_eq_neg_one_mul
... = (1 / a) * (1 / (- 1)) : division_ring.one_div_mul_one_div H this
... = (1 / a) * (-1) : one_div_neg_one_eq_neg_one
... = - (1 / a) : mul_neg_one_eq_neg
theorem div_neg_eq_neg_div (b : A) (Ha : a ≠ 0) : b / (- a) = - (b / a) :=
calc
b / (- a) = b * (1 / (- a)) : by rewrite -inv_eq_one_div
... = b * -(1 / a) : division_ring.one_div_neg_eq_neg_one_div Ha
... = -(b * (1 / a)) : neg_mul_eq_mul_neg
... = - (b * a⁻¹) : inv_eq_one_div
theorem neg_div (a b : A) : (-b) / a = - (b / a) :=
by rewrite [neg_eq_neg_one_mul, mul_div_assoc, -neg_eq_neg_one_mul]
theorem division_ring.neg_div_neg_eq (a : A) {b : A} (Hb : b ≠ 0) : (-a) / (-b) = a / b :=
by rewrite [(div_neg_eq_neg_div _ Hb), neg_div, neg_neg]
theorem division_ring.one_div_one_div (H : a ≠ 0) : 1 / (1 / a) = a :=
symm (eq_one_div_of_mul_eq_one_left (mul_one_div_cancel H))
theorem division_ring.eq_of_one_div_eq_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) (H : 1 / a = 1 / b) :
a = b :=
by rewrite [-(division_ring.one_div_one_div Ha), H, (division_ring.one_div_one_div Hb)]
theorem mul_inv_eq [simp] (Ha : a ≠ 0) (Hb : b ≠ 0) : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
eq.symm (calc
a⁻¹ * b⁻¹ = (1 / a) * (1 / b) : by inst_simp
... = (1 / (b * a)) : division_ring.one_div_mul_one_div Ha Hb
... = (b * a)⁻¹ : by simp)
theorem mul_div_cancel (a : A) {b : A} (Hb : b ≠ 0) : a * b / b = a :=
by simp
theorem div_mul_cancel (a : A) {b : A} (Hb : b ≠ 0) : a / b * b = a :=
by simp
theorem div_add_div_same (a b c : A) : a / c + b / c = (a + b) / c := !right_distrib⁻¹
theorem div_sub_div_same (a b c : A) : (a / c) - (b / c) = (a - b) / c :=
by rewrite [sub_eq_add_neg, -neg_div, div_add_div_same]
theorem one_div_mul_add_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (a + b) * (1 / b) = 1 / a + 1 / b :=
by rewrite [(left_distrib (1 / a)), (one_div_mul_cancel Ha), right_distrib, one_mul,
mul.assoc, (mul_one_div_cancel Hb), mul_one, add.comm]
theorem one_div_mul_sub_mul_one_div_eq_one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) :
(1 / a) * (b - a) * (1 / b) = 1 / a - 1 / b :=
by rewrite [(mul_sub_left_distrib (1 / a)), (one_div_mul_cancel Ha), mul_sub_right_distrib,
one_mul, mul.assoc, (mul_one_div_cancel Hb), mul_one]
theorem div_eq_one_iff_eq (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 ↔ a = b :=
iff.intro
(suppose a / b = 1, calc
a = a / b * b : by inst_simp
... = 1 * b : this
... = b : by simp)
(suppose a = b, by simp)
theorem eq_of_div_eq_one (a : A) {b : A} (Hb : b ≠ 0) : a / b = 1 → a = b :=
iff.mp (!div_eq_one_iff_eq Hb)
theorem eq_div_iff_mul_eq (a : A) {b : A} (Hc : c ≠ 0) : a = b / c ↔ a * c = b :=
iff.intro
(suppose a = b / c, by rewrite [this, (!div_mul_cancel Hc)])
(suppose a * c = b, by rewrite [-(!mul_div_cancel Hc), this])
theorem eq_div_of_mul_eq (a b : A) {c : A} (Hc : c ≠ 0) : a * c = b → a = b / c :=
iff.mpr (!eq_div_iff_mul_eq Hc)
theorem mul_eq_of_eq_div (a b: A) {c : A} (Hc : c ≠ 0) : a = b / c → a * c = b :=
iff.mp (!eq_div_iff_mul_eq Hc)
theorem add_div_eq_mul_add_div (a b : A) {c : A} (Hc : c ≠ 0) : a + b / c = (a * c + b) / c :=
have (a + b / c) * c = a * c + b, by rewrite [right_distrib, (!div_mul_cancel Hc)],
(iff.elim_right (!eq_div_iff_mul_eq Hc)) this
theorem mul_mul_div (a : A) {c : A} (Hc : c ≠ 0) : a = a * c * (1 / c) :=
by simp
-- There are many similar rules to these last two in the Isabelle library
-- that haven't been ported yet. Do as necessary.
end division_ring
structure field [class] (A : Type) extends division_ring A, comm_ring A
section field
variables [s : field A] {a b c d: A}
include s
theorem field.one_div_mul_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : (1 / a) * (1 / b) = 1 / (a * b) :=
by rewrite [(division_ring.one_div_mul_one_div Ha Hb), mul.comm b]
theorem field.div_mul_right (Hb : b ≠ 0) (H : a * b ≠ 0) : a / (a * b) = 1 / b :=
assert a ≠ 0, from and.left (ne_zero_and_ne_zero_of_mul_ne_zero H),
symm (calc
1 / b = a * ((1 / a) * (1 / b)) : by inst_simp
... = a * (1 / (b * a)) : division_ring.one_div_mul_one_div this Hb
... = a * (a * b)⁻¹ : by inst_simp)
theorem field.div_mul_left (Ha : a ≠ 0) (H : a * b ≠ 0) : b / (a * b) = 1 / a :=
let H1 : b * a ≠ 0 := mul_ne_zero_comm H in
by rewrite [mul.comm a, (field.div_mul_right Ha H1)]
theorem mul_div_cancel_left (Ha : a ≠ 0) : a * b / a = b :=
by rewrite [mul.comm a, (!mul_div_cancel Ha)]
theorem mul_div_cancel' (Hb : b ≠ 0) : b * (a / b) = a :=
by rewrite [mul.comm, (!div_mul_cancel Hb)]
theorem one_div_add_one_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / a + 1 / b = (a + b) / (a * b) :=
assert a * b ≠ 0, from (division_ring.mul_ne_zero Ha Hb),
by rewrite [add.comm, -(field.div_mul_left Ha this), -(field.div_mul_right Hb this), *division.def,
-right_distrib]
theorem field.div_mul_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
(a / b) * (c / d) = (a * c) / (b * d) :=
by inst_simp
theorem mul_div_mul_left (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
(c * a) / (c * b) = a / b :=
by rewrite [-(!field.div_mul_div Hc Hb), (div_self Hc), one_mul]
theorem mul_div_mul_right (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
(a * c) / (b * c) = a / b :=
by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left Hb Hc)]
theorem div_mul_eq_mul_div (a b c : A) : (b / c) * a = (b * a) / c :=
by rewrite [*division.def, mul.assoc, (mul.comm c⁻¹), -mul.assoc]
theorem field.div_mul_eq_mul_div_comm (a b : A) {c : A} (Hc : c ≠ 0) :
(b / c) * a = b * (a / c) :=
by rewrite [(div_mul_eq_mul_div), -(one_mul c), -(!field.div_mul_div (ne.symm zero_ne_one) Hc),
div_one, one_mul]
theorem div_add_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
(a / b) + (c / d) = ((a * d) + (b * c)) / (b * d) :=
by rewrite [-(!mul_div_mul_right Hb Hd), -(!mul_div_mul_left Hd Hb), div_add_div_same]
theorem div_sub_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0) (Hd : d ≠ 0) :
(a / b) - (c / d) = ((a * d) - (b * c)) / (b * d) :=
by rewrite [*sub_eq_add_neg, neg_eq_neg_one_mul, -mul_div_assoc, (!div_add_div Hb Hd),
-mul.assoc, (mul.comm b), mul.assoc, -neg_eq_neg_one_mul]
theorem mul_eq_mul_of_div_eq_div (a : A) {b : A} (c : A) {d : A} (Hb : b ≠ 0)
(Hd : d ≠ 0) (H : a / b = c / d) : a * d = c * b :=
by rewrite [-mul_one, mul.assoc, (mul.comm d), -mul.assoc, -(div_self Hb),
-(!field.div_mul_eq_mul_div_comm Hb), H, (div_mul_eq_mul_div), (!div_mul_cancel Hd)]
theorem field.one_div_div (Ha : a ≠ 0) (Hb : b ≠ 0) : 1 / (a / b) = b / a :=
have (a / b) * (b / a) = 1, from calc
(a / b) * (b / a) = (a * b) / (b * a) : !field.div_mul_div Hb Ha
... = (a * b) / (a * b) : mul.comm
... = 1 : div_self (division_ring.mul_ne_zero Ha Hb),
symm (eq_one_div_of_mul_eq_one this)
theorem field.div_div_eq_mul_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
a / (b / c) = (a * c) / b :=
by rewrite [div_eq_mul_one_div, (field.one_div_div Hb Hc), -mul_div_assoc]
theorem field.div_div_eq_div_mul (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
(a / b) / c = a / (b * c) :=
by rewrite [div_eq_mul_one_div, (!field.div_mul_div Hb Hc), mul_one]
theorem field.div_div_div_div_eq (a : A) {b c d : A} (Hb : b ≠ 0) (Hc : c ≠ 0) (Hd : d ≠ 0) :
(a / b) / (c / d) = (a * d) / (b * c) :=
by rewrite [(!field.div_div_eq_mul_div Hc Hd), (div_mul_eq_mul_div),
(!field.div_div_eq_div_mul Hb Hc)]
theorem field.div_mul_eq_div_mul_one_div (a : A) {b c : A} (Hb : b ≠ 0) (Hc : c ≠ 0) :
a / (b * c) = (a / b) * (1 / c) :=
by rewrite [-!field.div_div_eq_div_mul Hb Hc, -div_eq_mul_one_div]
theorem eq_of_mul_eq_mul_of_nonzero_left {a b c : A} (H : a ≠ 0) (H2 : a * b = a * c) : b = c :=
by rewrite [-one_mul b, -div_self H, div_mul_eq_mul_div, H2, mul_div_cancel_left H]
theorem eq_of_mul_eq_mul_of_nonzero_right {a b c : A} (H : c ≠ 0) (H2 : a * c = b * c) : a = b :=
by rewrite [-mul_one a, -div_self H, -mul_div_assoc, H2, mul_div_cancel _ H]
end field
structure discrete_field [class] (A : Type) extends field A :=
(has_decidable_eq : decidable_eq A)
(inv_zero : inv zero = zero)
attribute discrete_field.has_decidable_eq [instance]
section discrete_field
variable [s : discrete_field A]
include s
variables {a b c d : A}
-- many of the theorems in discrete_field are the same as theorems in field or division ring,
-- but with fewer hypotheses since 0⁻¹ = 0 and equality is decidable.
theorem discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero
(x y : A) (H : x * y = 0) : x = 0 y = 0 :=
decidable.by_cases
(suppose x = 0, or.inl this)
(suppose x ≠ 0,
or.inr (by rewrite [-one_mul, -(inv_mul_cancel this), mul.assoc, H, mul_zero]))
definition discrete_field.to_integral_domain [trans_instance] [reducible] :
integral_domain A :=
⦃ integral_domain, s,
eq_zero_or_eq_zero_of_mul_eq_zero := discrete_field.eq_zero_or_eq_zero_of_mul_eq_zero⦄
theorem inv_zero : 0⁻¹ = (0:A) := !discrete_field.inv_zero
theorem one_div_zero : 1 / 0 = (0:A) :=
calc
1 / 0 = 1 * 0⁻¹ : refl
... = 1 * 0 : inv_zero
... = 0 : mul_zero
theorem div_zero (a : A) : a / 0 = 0 := by rewrite [div_eq_mul_one_div, one_div_zero, mul_zero]
theorem ne_zero_of_one_div_ne_zero (H : 1 / a ≠ 0) : a ≠ 0 :=
assume Ha : a = 0, absurd (Ha⁻¹ ▸ one_div_zero) H
theorem eq_zero_of_one_div_eq_zero (H : 1 / a = 0) : a = 0 :=
decidable.by_cases
(assume Ha, Ha)
(assume Ha, false.elim ((one_div_ne_zero Ha) H))
variables (a b)
theorem one_div_mul_one_div' : (1 / a) * (1 / b) = 1 / (b * a) :=
decidable.by_cases
(suppose a = 0,
by rewrite [this, div_zero, zero_mul, -(@div_zero A s 1), mul_zero b])
(assume Ha : a ≠ 0,
decidable.by_cases
(suppose b = 0,
by rewrite [this, div_zero, mul_zero, -(@div_zero A s 1), zero_mul a])
(suppose b ≠ 0, division_ring.one_div_mul_one_div Ha this))
theorem one_div_neg_eq_neg_one_div : 1 / (- a) = - (1 / a) :=
decidable.by_cases
(suppose a = 0, by rewrite [this, neg_zero, 2 div_zero, neg_zero])
(suppose a ≠ 0, division_ring.one_div_neg_eq_neg_one_div this)
theorem neg_div_neg_eq : (-a) / (-b) = a / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, neg_zero, 2 div_zero])
(assume Hb : b ≠ 0, !division_ring.neg_div_neg_eq Hb)
theorem one_div_one_div : 1 / (1 / a) = a :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, 2 div_zero])
(assume Ha : a ≠ 0, division_ring.one_div_one_div Ha)
variables {a b}
theorem eq_of_one_div_eq_one_div (H : 1 / a = 1 / b) : a = b :=
decidable.by_cases
(assume Ha : a = 0,
have Hb : b = 0, from eq_zero_of_one_div_eq_zero (by rewrite [-H, Ha, div_zero]),
Hb⁻¹ ▸ Ha)
(assume Ha : a ≠ 0,
have Hb : b ≠ 0, from ne_zero_of_one_div_ne_zero (H ▸ (one_div_ne_zero Ha)),
division_ring.eq_of_one_div_eq_one_div Ha Hb H)
variables (a b)
theorem mul_inv' : (b * a)⁻¹ = a⁻¹ * b⁻¹ :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, mul_zero, 2 inv_zero, zero_mul])
(assume Ha : a ≠ 0,
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, zero_mul, 2 inv_zero, mul_zero])
(assume Hb : b ≠ 0, mul_inv_eq Ha Hb))
-- the following are specifically for fields
theorem one_div_mul_one_div : (1 / a) * (1 / b) = 1 / (a * b) :=
by rewrite [one_div_mul_one_div', mul.comm b]
variable {a}
theorem div_mul_right (Ha : a ≠ 0) : a / (a * b) = 1 / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
(assume Hb : b ≠ 0, field.div_mul_right Hb (mul_ne_zero Ha Hb))
variables (a) {b}
theorem div_mul_left (Hb : b ≠ 0) : b / (a * b) = 1 / a :=
by rewrite [mul.comm a, div_mul_right _ Hb]
variables (a b c)
theorem div_mul_div : (a / b) * (c / d) = (a * c) / (b * d) :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, div_zero, zero_mul, -(@div_zero A s (a * c)), zero_mul])
(assume Hb : b ≠ 0,
decidable.by_cases
(assume Hd : d = 0, by rewrite [Hd, div_zero, mul_zero, -(@div_zero A s (a * c)),
mul_zero])
(assume Hd : d ≠ 0, !field.div_mul_div Hb Hd))
variable {c}
theorem mul_div_mul_left' (Hc : c ≠ 0) : (c * a) / (c * b) = a / b :=
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, mul_zero, 2 div_zero])
(assume Hb : b ≠ 0, !mul_div_mul_left Hb Hc)
theorem mul_div_mul_right' (Hc : c ≠ 0) : (a * c) / (b * c) = a / b :=
by rewrite [(mul.comm a), (mul.comm b), (!mul_div_mul_left' Hc)]
variables (a b c d)
theorem div_mul_eq_mul_div_comm : (b / c) * a = b * (a / c) :=
decidable.by_cases
(assume Hc : c = 0, by rewrite [Hc, div_zero, zero_mul, -(mul_zero b), -(@div_zero A s a)])
(assume Hc : c ≠ 0, !field.div_mul_eq_mul_div_comm Hc)
theorem one_div_div : 1 / (a / b) = b / a :=
decidable.by_cases
(assume Ha : a = 0, by rewrite [Ha, zero_div, 2 div_zero])
(assume Ha : a ≠ 0,
decidable.by_cases
(assume Hb : b = 0, by rewrite [Hb, 2 div_zero, zero_div])
(assume Hb : b ≠ 0, field.one_div_div Ha Hb))
theorem div_div_eq_mul_div : a / (b / c) = (a * c) / b :=
by rewrite [div_eq_mul_one_div, one_div_div, -mul_div_assoc]
theorem div_div_eq_div_mul : (a / b) / c = a / (b * c) :=
by rewrite [div_eq_mul_one_div, div_mul_div, mul_one]
theorem div_div_div_div_eq : (a / b) / (c / d) = (a * d) / (b * c) :=
by rewrite [div_div_eq_mul_div, div_mul_eq_mul_div, div_div_eq_div_mul]
variable {a}
theorem div_helper (H : a ≠ 0) : (1 / (a * b)) * a = 1 / b :=
by rewrite [div_mul_eq_mul_div, one_mul, !div_mul_right H]
variable (a)
theorem div_mul_eq_div_mul_one_div : a / (b * c) = (a / b) * (1 / c) :=
by rewrite [-div_div_eq_div_mul, -div_eq_mul_one_div]
end discrete_field
namespace norm_num
theorem div_add_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : n + b * d = val)
(H2 : c * d = val) : n / d + b = c :=
begin
apply eq_of_mul_eq_mul_of_nonzero_right Hd,
rewrite [H2, -H, right_distrib, div_mul_cancel _ Hd]
end
theorem add_div_helper [s : field A] (n d b c val : A) (Hd : d ≠ 0) (H : d * b + n = val)
(H2 : d * c = val) : b + n / d = c :=
begin
apply eq_of_mul_eq_mul_of_nonzero_left Hd,
rewrite [H2, -H, left_distrib, mul_div_cancel' Hd]
end
theorem div_mul_helper [s : field A] (n d c v : A) (Hd : d ≠ 0) (H : (n * c) / d = v) :
(n / d) * c = v :=
by rewrite [-H, field.div_mul_eq_mul_div_comm _ _ Hd, mul_div_assoc]
theorem mul_div_helper [s : field A] (a n d v : A) (Hd : d ≠ 0) (H : (a * n) / d = v) :
a * (n / d) = v :=
by rewrite [-H, mul_div_assoc]
theorem nonzero_of_div_helper [s : field A] (a b : A) (Ha : a ≠ 0) (Hb : b ≠ 0) : a / b ≠ 0 :=
begin
intro Hab,
have Habb : (a / b) * b = 0, by rewrite [Hab, zero_mul],
rewrite [div_mul_cancel _ Hb at Habb],
exact Ha Habb
end
theorem div_helper [s : field A] (n d v : A) (Hd : d ≠ 0) (H : v * d = n) : n / d = v :=
begin
apply eq_of_mul_eq_mul_of_nonzero_right Hd,
rewrite (div_mul_cancel _ Hd),
exact eq.symm H
end
theorem div_eq_div_helper [s : field A] (a b c d v : A) (H1 : a * d = v) (H2 : c * b = v)
(Hb : b ≠ 0) (Hd : d ≠ 0) : a / b = c / d :=
begin
apply eq_div_of_mul_eq,
exact Hd,
rewrite div_mul_eq_mul_div,
apply eq.symm,
apply eq_div_of_mul_eq,
exact Hb,
rewrite [H1, H2]
end
theorem subst_into_div [s : has_div A] (a₁ b₁ a₂ b₂ v : A) (H : a₁ / b₁ = v) (H1 : a₂ = a₁)
(H2 : b₂ = b₁) : a₂ / b₂ = v :=
by rewrite [H1, H2, H]
end norm_num