lean2/tests/lean/slow/nat_wo_hints.lean
Leonardo de Moura 07bc0727e2 feat(frontends/lean): 'let [inline]' is the default
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-08-21 18:24:22 -07:00

1424 lines
49 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
----------------------------------------------------------------------------------------------------
import standard struc.binary
using tactic num binary eq_ops
using decidable
namespace nat
inductive nat : Type :=
| zero : nat
| succ : nat → nat
notation ``:max := nat
abbreviation plus (x y : ) :
:= nat_rec x (λ n r, succ r) y
definition to_nat [coercion] [inline] (n : num) :
:= num_rec zero (λ n, pos_num_rec (succ zero) (λ n r, plus r (plus r (succ zero))) (λ n r, plus r r) n) n
namespace helper_tactics
definition apply_refl := apply @refl
tactic_hint apply_refl
end helper_tactics
using helper_tactics
theorem nat_rec_zero {P : → Type} (x : P 0) (f : ∀m, P m → P (succ m)) : nat_rec x f 0 = x
theorem nat_rec_succ {P : → Type} (x : P 0) (f : ∀m, P m → P (succ m)) (n : ) : nat_rec x f (succ n) = f n (nat_rec x f n)
theorem induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : ∀ (n : ) (IH : P n), P (succ n)) : P a
:= nat_rec H1 H2 a
definition rec_on {P : → Type} (n : ) (H1 : P 0) (H2 : ∀m, P m → P (succ m)) : P n
:= nat_rec H1 H2 n
-------------------------------------------------- succ pred
theorem succ_ne_zero (n : ) : succ n ≠ 0
:= assume H : succ n = 0,
have H2 : true = false, from
let f := (nat_rec false (fun a b, true)) in
calc true = f (succ n) : _
... = f 0 : {H}
... = false : _,
absurd H2 true_ne_false
definition pred (n : ) := nat_rec 0 (fun m x, m) n
theorem pred_zero : pred 0 = 0
theorem pred_succ (n : ) : pred (succ n) = n
theorem zero_or_succ (n : ) : n = 0 n = succ (pred n)
:= induction_on n
(or_intro_left _ (refl 0))
(take m IH, or_intro_right _
(show succ m = succ (pred (succ m)), from congr_arg succ (pred_succ m⁻¹)))
theorem zero_or_succ2 (n : ) : n = 0 ∃k, n = succ k
:= or_imp_or (zero_or_succ n) (assume H, H) (assume H : n = succ (pred n), exists_intro (pred n) H)
theorem case {P : → Prop} (n : ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n
:= induction_on n H1 (take m IH, H2 m)
theorem discriminate {B : Prop} {n : } (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B
:= or_elim (zero_or_succ n)
(take H3 : n = 0, H1 H3)
(take H3 : n = succ (pred n), H2 (pred n) H3)
theorem succ_inj {n m : } (H : succ n = succ m) : n = m
:= calc
n = pred (succ n) : pred_succ n⁻¹
... = pred (succ m) : {H}
... = m : pred_succ m
theorem succ_ne_self (n : ) : succ n ≠ n
:= induction_on n
(take H : 1 = 0,
have ne : 1 ≠ 0, from succ_ne_zero 0,
absurd H ne)
(take k IH H, IH (succ_inj H))
theorem decidable_eq [instance] (n m : ) : decidable (n = m)
:= have general : ∀n, decidable (n = m), from
rec_on m
(take n,
rec_on n
(inl (refl 0))
(λ m iH, inr (succ_ne_zero m)))
(λ (m' : ) (iH1 : ∀n, decidable (n = m')),
take n, rec_on n
(inr (ne_symm (succ_ne_zero m')))
(λ (n' : ) (iH2 : decidable (n' = succ m')),
have d1 : decidable (n' = m'), from iH1 n',
decidable.rec_on d1
(assume Heq : n' = m', inl (congr_arg succ Heq))
(assume Hne : n' ≠ m',
have H1 : succ n' ≠ succ m', from
assume Heq, absurd (succ_inj Heq) Hne,
inr H1))),
general n
theorem two_step_induction_on {P : → Prop} (a : ) (H1 : P 0) (H2 : P 1)
(H3 : ∀ (n : ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a
:= have stronger : P a ∧ P (succ a), from
induction_on a
(and_intro H1 H2)
(take k IH,
have IH1 : P k, from and_elim_left IH,
have IH2 : P (succ k), from and_elim_right IH,
and_intro IH2 (H3 k IH1 IH2)),
and_elim_left stronger
theorem sub_induction {P : → Prop} (n m : ) (H1 : ∀m, P 0 m)
(H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m
:= have general : ∀m, P n m, from induction_on n
(take m : , H1 m)
(take k : ,
assume IH : ∀m, P k m,
take m : ,
discriminate
(assume Hm : m = 0,
Hm⁻¹ ▸ (H2 k))
(take l : ,
assume Hm : m = succ l,
Hm⁻¹ ▸ (H3 k l (IH l)))),
general m
-------------------------------------------------- add
definition add (x y : ) : := plus x y
infixl `+`:65 := add
theorem add_zero_right (n : ) : n + 0 = n
theorem add_succ_right (n m : ) : n + succ m = succ (n + m)
---------- comm, assoc
theorem add_zero_left (n : ) : 0 + n = n
:= induction_on n
(add_zero_right 0)
(take m IH, show 0 + succ m = succ m, from
calc
0 + succ m = succ (0 + m) : add_succ_right _ _
... = succ m : {IH})
theorem add_succ_left (n m : ) : (succ n) + m = succ (n + m)
:= induction_on m
(calc
succ n + 0 = succ n : add_zero_right (succ n)
... = succ (n + 0) : {symm (add_zero_right n)})
(take k IH,
calc
succ n + succ k = succ (succ n + k) : add_succ_right _ _
... = succ (succ (n + k)) : {IH}
... = succ (n + succ k) : {symm (add_succ_right _ _)})
theorem add_comm (n m : ) : n + m = m + n
:= induction_on m
(trans (add_zero_right _) (symm (add_zero_left _)))
(take k IH,
calc
n + succ k = succ (n+k) : add_succ_right _ _
... = succ (k + n) : {IH}
... = succ k + n : symm (add_succ_left _ _))
theorem add_move_succ (n m : ) : succ n + m = n + succ m
:= calc
succ n + m = succ (n + m) : add_succ_left n m
... = n +succ m : symm (add_succ_right n m)
theorem add_comm_succ (n m : ) : n + succ m = m + succ n
:= calc
n + succ m = succ n + m : symm (add_move_succ n m)
... = m + succ n : add_comm (succ n) m
theorem add_assoc (n m k : ) : (n + m) + k = n + (m + k)
:= induction_on k
(calc
(n + m) + 0 = n + m : add_zero_right _
... = n + (m + 0) : {symm (add_zero_right m)})
(take l IH,
calc
(n + m) + succ l = succ ((n + m) + l) : add_succ_right _ _
... = succ (n + (m + l)) : {IH}
... = n + succ (m + l) : symm (add_succ_right _ _)
... = n + (m + succ l) : {symm (add_succ_right _ _)})
theorem add_left_comm (n m k : ) : n + (m + k) = m + (n + k)
:= left_comm add_comm add_assoc n m k
theorem add_right_comm (n m k : ) : n + m + k = n + k + m
:= right_comm add_comm add_assoc n m k
---------- inversion
theorem add_cancel_left {n m k : } : n + m = n + k → m = k
:=
induction_on n
(take H : 0 + m = 0 + k,
calc
m = 0 + m : symm (add_zero_left m)
... = 0 + k : H
... = k : add_zero_left k)
(take (n : ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
have H2 : succ (n + m) = succ (n + k),
from calc
succ (n + m) = succ n + m : symm (add_succ_left n m)
... = succ n + k : H
... = succ (n + k) : add_succ_left n k,
have H3 : n + m = n + k, from succ_inj H2,
IH H3)
--rename to and_cancel_right
theorem add_cancel_right {n m k : } (H : n + m = k + m) : n = k
:=
have H2 : m + n = m + k,
from calc
m + n = n + m : add_comm m n
... = k + m : H
... = m + k : add_comm k m,
add_cancel_left H2
theorem add_eq_zero_left {n m : } : n + m = 0 → n = 0
:=
induction_on n
(take (H : 0 + m = 0), refl 0)
(take k IH,
assume (H : succ k + m = 0),
absurd_elim (succ k = 0)
(show succ (k + m) = 0, from
calc
succ (k + m) = succ k + m : symm (add_succ_left k m)
... = 0 : H)
(succ_ne_zero (k + m)))
theorem add_eq_zero_right {n m : } (H : n + m = 0) : m = 0
:= add_eq_zero_left (trans (add_comm m n) H)
theorem add_eq_zero {n m : } (H : n + m = 0) : n = 0 ∧ m = 0
:= and_intro (add_eq_zero_left H) (add_eq_zero_right H)
-- add_eq_self below
---------- misc
theorem add_one (n:) : n + 1 = succ n
:=
calc
n + 1 = succ (n + 0) : add_succ_right _ _
... = succ n : {add_zero_right _}
theorem add_one_left (n:) : 1 + n = succ n
:=
calc
1 + n = succ (0 + n) : add_succ_left _ _
... = succ n : {add_zero_left _}
--the following theorem has a terrible name, but since the name is not a substring or superstring of another name, it is at least easy to globally replace it
theorem induction_plus_one {P : → Prop} (a : ) (H1 : P 0)
(H2 : ∀ (n : ) (IH : P n), P (n + 1)) : P a
:= nat_rec H1 (take n IH, (add_one n) ▸ (H2 n IH)) a
-------------------------------------------------- mul
definition mul (n m : ) := nat_rec 0 (fun m x, x + n) m
infixl `*`:75 := mul
theorem mul_zero_right (n:) : n * 0 = 0
theorem mul_succ_right (n m:) : n * succ m = n * m + n
set_option unifier.max_steps 100000
---------- comm, distr, assoc, identity
theorem mul_zero_left (n:) : 0 * n = 0
:= induction_on n
(mul_zero_right 0)
(take m IH,
calc
0 * succ m = 0 * m + 0 : mul_succ_right _ _
... = 0 * m : add_zero_right _
... = 0 : IH)
theorem mul_succ_left (n m:) : (succ n) * m = (n * m) + m
:= induction_on m
(calc
succ n * 0 = 0 : mul_zero_right _
... = n * 0 : symm (mul_zero_right _)
... = n * 0 + 0 : symm (add_zero_right _))
(take k IH,
calc
succ n * succ k = (succ n * k) + succ n : mul_succ_right _ _
... = (n * k) + k + succ n : { IH }
... = (n * k) + (k + succ n) : add_assoc _ _ _
... = (n * k) + (n + succ k) : {add_comm_succ _ _}
... = (n * k) + n + succ k : symm (add_assoc _ _ _)
... = (n * succ k) + succ k : {symm (mul_succ_right n k)})
theorem mul_comm (n m:) : n * m = m * n
:= induction_on m
(trans (mul_zero_right _) (symm (mul_zero_left _)))
(take k IH,
calc
n * succ k = n * k + n : mul_succ_right _ _
... = k * n + n : {IH}
... = (succ k) * n : symm (mul_succ_left _ _))
theorem mul_add_distr_left (n m k : ) : (n + m) * k = n * k + m * k
:= induction_on k
(calc
(n + m) * 0 = 0 : mul_zero_right _
... = 0 + 0 : symm (add_zero_right _)
... = n * 0 + 0 : refl _
... = n * 0 + m * 0 : refl _)
(take l IH, calc
(n + m) * succ l = (n + m) * l + (n + m) : mul_succ_right _ _
... = n * l + m * l + (n + m) : {IH}
... = n * l + m * l + n + m : symm (add_assoc _ _ _)
... = n * l + n + m * l + m : {add_right_comm _ _ _}
... = n * l + n + (m * l + m) : add_assoc _ _ _
... = n * succ l + (m * l + m) : {symm (mul_succ_right _ _)}
... = n * succ l + m * succ l : {symm (mul_succ_right _ _)})
theorem mul_add_distr_right (n m k : ) : n * (m + k) = n * m + n * k
:= calc
n * (m + k) = (m + k) * n : mul_comm _ _
... = m * n + k * n : mul_add_distr_left _ _ _
... = n * m + k * n : {mul_comm _ _}
... = n * m + n * k : {mul_comm _ _}
theorem mul_assoc (n m k:) : (n * m) * k = n * (m * k)
:= induction_on k
(calc
(n * m) * 0 = 0 : mul_zero_right _
... = n * 0 : symm (mul_zero_right _)
... = n * (m * 0) : {symm (mul_zero_right _)})
(take l IH,
calc
(n * m) * succ l = (n * m) * l + n * m : mul_succ_right _ _
... = n * (m * l) + n * m : {IH}
... = n * (m * l + m) : symm (mul_add_distr_right _ _ _)
... = n * (m * succ l) : {symm (mul_succ_right _ _)})
theorem mul_comm_left (n m k : ) : n * (m * k) = m * (n * k)
:= left_comm mul_comm mul_assoc n m k
theorem mul_comm_right (n m k : ) : n * m * k = n * k * m
:= right_comm mul_comm mul_assoc n m k
theorem mul_one_right (n : ) : n * 1 = n
:= calc
n * 1 = n * 0 + n : mul_succ_right n 0
... = 0 + n : {mul_zero_right n}
... = n : add_zero_left n
theorem mul_one_left (n : ) : 1 * n = n
:= calc
1 * n = n * 1 : mul_comm _ _
... = n : mul_one_right n
---------- inversion
theorem mul_eq_zero {n m : } (H : n * m = 0) : n = 0 m = 0
:=
discriminate
(take Hn : n = 0, or_intro_left _ Hn)
(take (k : ),
assume (Hk : n = succ k),
discriminate
(take (Hm : m = 0), or_intro_right _ Hm)
(take (l : ),
assume (Hl : m = succ l),
have Heq : succ (k * succ l + l) = n * m, from
symm (calc
n * m = n * succ l : { Hl }
... = succ k * succ l : { Hk }
... = k * succ l + succ l : mul_succ_left _ _
... = succ (k * succ l + l) : add_succ_right _ _),
absurd_elim _ (trans Heq H) (succ_ne_zero _)))
-- see more under "positivity" below
-------------------------------------------------- le
definition le (n m:) : Prop := ∃k, n + k = m
infix `<=`:50 := le
infix `≤`:50 := le
theorem le_intro {n m k : } (H : n + k = m) : n ≤ m
:= exists_intro k H
theorem le_elim {n m : } (H : n ≤ m) : ∃ k, n + k = m
:= H
---------- partial order (totality is part of lt)
theorem le_intro2 (n m : ) : n ≤ n + m
:= le_intro (refl (n + m))
theorem le_refl (n : ) : n ≤ n
:= le_intro (add_zero_right n)
theorem zero_le (n : ) : 0 ≤ n
:= le_intro (add_zero_left n)
theorem le_zero {n : } (H : n ≤ 0) : n = 0
:=
obtain (k : ) (Hk : n + k = 0), from le_elim H,
add_eq_zero_left Hk
theorem not_succ_zero_le (n : ) : ¬ succ n ≤ 0
:= assume H : succ n ≤ 0,
have H2 : succ n = 0, from le_zero H,
absurd H2 (succ_ne_zero n)
theorem le_zero_inv {n : } (H : n ≤ 0) : n = 0
:= obtain (k : ) (Hk : n + k = 0), from le_elim H,
add_eq_zero_left Hk
theorem le_trans {n m k : } (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k
:= obtain (l1 : ) (Hl1 : n + l1 = m), from le_elim H1,
obtain (l2 : ) (Hl2 : m + l2 = k), from le_elim H2,
le_intro
(calc
n + (l1 + l2) = n + l1 + l2 : symm (add_assoc n l1 l2)
... = m + l2 : { Hl1 }
... = k : Hl2)
theorem le_antisym {n m : } (H1 : n ≤ m) (H2 : m ≤ n) : n = m
:= obtain (k : ) (Hk : n + k = m), from (le_elim H1),
obtain (l : ) (Hl : m + l = n), from (le_elim H2),
have L1 : k + l = 0, from
add_cancel_left
(calc
n + (k + l) = n + k + l : { symm (add_assoc n k l) }
... = m + l : { Hk }
... = n : Hl
... = n + 0 : symm (add_zero_right n)),
have L2 : k = 0, from add_eq_zero_left L1,
calc
n = n + 0 : symm (add_zero_right n)
... = n + k : { symm L2 }
... = m : Hk
---------- interaction with add
theorem add_le_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m
:= obtain (l : ) (Hl : n + l = m), from (le_elim H),
le_intro
(calc
k + n + l = k + (n + l) : add_assoc k n l
... = k + m : { Hl })
theorem add_le_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k
:= (add_comm k m) ▸ (add_comm k n) ▸ (add_le_left H k)
theorem add_le {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n + m ≤ k + l
:= le_trans (add_le_right H1 m) (add_le_left H2 k)
theorem add_le_left_inv {n m k : } (H : k + n ≤ k + m) : n ≤ m
:=
obtain (l : ) (Hl : k + n + l = k + m), from (le_elim H),
le_intro (add_cancel_left
(calc
k + (n + l) = k + n + l : symm (add_assoc k n l)
... = k + m : Hl))
theorem add_le_right_inv {n m k : } (H : n + k ≤ m + k) : n ≤ m
:= add_le_left_inv (add_comm m k ▸ add_comm n k ▸ H)
---------- interaction with succ and pred
theorem succ_le {n m : } (H : n ≤ m) : succ n ≤ succ m
:= add_one m ▸ add_one n ▸ add_le_right H 1
theorem succ_le_cancel {n m : } (H : succ n ≤ succ m) : n ≤ m
:= add_le_right_inv (add_one m⁻¹ ▸ add_one n⁻¹ ▸ H)
theorem self_le_succ (n : ) : n ≤ succ n
:= le_intro (add_one n)
theorem le_imp_le_succ {n m : } (H : n ≤ m) : n ≤ succ m
:= le_trans H (self_le_succ m)
theorem succ_le_left_or {n m : } (H : n ≤ m) : succ n ≤ m n = m
:= obtain (k : ) (Hk : n + k = m), from (le_elim H),
discriminate
(assume H3 : k = 0,
have Heq : n = m,
from calc
n = n + 0 : (add_zero_right n)⁻¹
... = n + k : {H3⁻¹}
... = m : Hk,
or_intro_right _ Heq)
(take l:,
assume H3 : k = succ l,
have Hlt : succ n ≤ m, from
(le_intro
(calc
succ n + l = n + succ l : add_move_succ n l
... = n + k : {H3⁻¹}
... = m : Hk)),
or_intro_left _ Hlt)
theorem succ_le_left {n m : } (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
:= resolve_left (succ_le_left_or H1) H2
theorem succ_le_right_inv {n m : } (H : n ≤ succ m) : n ≤ m n = succ m
:= or_imp_or (succ_le_left_or H)
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
(take H2 : n = succ m, H2)
theorem succ_le_left_inv {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
:= obtain (k : ) (H2 : succ n + k = m), from (le_elim H),
and_intro
(have H3 : n + succ k = m,
from calc
n + succ k = succ n + k : symm (add_move_succ n k)
... = m : H2,
show n ≤ m, from le_intro H3)
(assume H3 : n = m,
have H4 : succ n ≤ n, from subst (symm H3) H,
have H5 : succ n = n, from le_antisym H4 (self_le_succ n),
show false, from absurd H5 (succ_ne_self n))
theorem le_pred_self (n : ) : pred n ≤ n
:= case n
(subst (symm pred_zero) (le_refl 0))
(take k : , subst (symm (pred_succ k)) (self_le_succ k))
theorem pred_le {n m : } (H : n ≤ m) : pred n ≤ pred m
:= discriminate
(take Hn : n = 0,
have H2 : pred n = 0,
from calc
pred n = pred 0 : {Hn}
... = 0 : pred_zero,
subst (symm H2) (zero_le (pred m)))
(take k : ,
assume Hn : n = succ k,
obtain (l : ) (Hl : n + l = m), from le_elim H,
have H2 : pred n + l = pred m,
from calc
pred n + l = pred (succ k) + l : {Hn}
... = k + l : {pred_succ k}
... = pred (succ (k + l)) : symm (pred_succ (k + l))
... = pred (succ k + l) : {symm (add_succ_left k l)}
... = pred (n + l) : {symm Hn}
... = pred m : {Hl},
le_intro H2)
theorem pred_le_left_inv {n m : } (H : pred n ≤ m) : n ≤ m n = succ m
:= discriminate
(take Hn : n = 0,
or_intro_left _ (subst (symm Hn) (zero_le m)))
(take k : ,
assume Hn : n = succ k,
have H2 : pred n = k,
from calc
pred n = pred (succ k) : {Hn}
... = k : pred_succ k,
have H3 : k ≤ m, from subst H2 H,
have H4 : succ k ≤ m k = m, from succ_le_left_or H3,
show n ≤ m n = succ m, from
or_imp_or H4
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
(take H5 : k = m, show n = succ m, from subst H5 Hn))
-- ### interaction with successor and predecessor
theorem le_imp_succ_le_or_eq {n m : } (H : n ≤ m) : succ n ≤ m n = m
:=
obtain (k : ) (Hk : n + k = m), from (le_elim H),
discriminate
(assume H3 : k = 0,
have Heq : n = m,
from calc
n = n + 0 : symm (add_zero_right n)
... = n + k : {symm H3}
... = m : Hk,
or_intro_right _ Heq)
(take l : nat,
assume H3 : k = succ l,
have Hlt : succ n ≤ m, from
(le_intro
(calc
succ n + l = n + succ l : add_move_succ n l
... = n + k : {symm H3}
... = m : Hk)),
or_intro_left _ Hlt)
theorem le_ne_imp_succ_le {n m : } (H1 : n ≤ m) (H2 : n ≠ m) : succ n ≤ m
:= resolve_left (le_imp_succ_le_or_eq H1) H2
theorem le_succ_imp_le_or_eq {n m : } (H : n ≤ succ m) : n ≤ m n = succ m
:= imp_or_left (le_imp_succ_le_or_eq H)
(take H2 : succ n ≤ succ m, show n ≤ m, from succ_le_cancel H2)
theorem succ_le_imp_le_and_ne {n m : } (H : succ n ≤ m) : n ≤ m ∧ n ≠ m
:=
and_intro
(le_trans (self_le_succ n) H)
(assume H2 : n = m,
have H3 : succ n ≤ n, from subst (symm H2) H,
have H4 : succ n = n, from le_antisym H3 (self_le_succ n),
show false, from absurd H4 (succ_ne_self n))
theorem pred_le_self (n : ) : pred n ≤ n
:=
case n
(subst (symm pred_zero) (le_refl 0))
(take k : nat, subst (symm (pred_succ k)) (self_le_succ k))
theorem pred_le_imp_le_or_eq {n m : } (H : pred n ≤ m) : n ≤ m n = succ m
:=
discriminate
(take Hn : n = 0,
or_intro_left _ (subst (symm Hn) (zero_le m)))
(take k : nat,
assume Hn : n = succ k,
have H2 : pred n = k,
from calc
pred n = pred (succ k) : {Hn}
... = k : pred_succ k,
have H3 : k ≤ m, from subst H2 H,
have H4 : succ k ≤ m k = m, from le_imp_succ_le_or_eq H3,
show n ≤ m n = succ m, from
or_imp_or H4
(take H5 : succ k ≤ m, show n ≤ m, from subst (symm Hn) H5)
(take H5 : k = m, show n = succ m, from subst H5 Hn))
---------- interaction with mul
theorem mul_le_left {n m : } (H : n ≤ m) (k : ) : k * n ≤ k * m
:=
obtain (l : ) (Hl : n + l = m), from (le_elim H),
induction_on k
(have H2 : 0 * n = 0 * m,
from calc
0 * n = 0 : mul_zero_left n
... = 0 * m : symm (mul_zero_left m),
show 0 * n ≤ 0 * m, from subst H2 (le_refl (0 * n)))
(take (l : ),
assume IH : l * n ≤ l * m,
have H2 : l * n + n ≤ l * m + m, from add_le IH H,
have H3 : succ l * n ≤ l * m + m, from subst (symm (mul_succ_left l n)) H2,
show succ l * n ≤ succ l * m, from subst (symm (mul_succ_left l m)) H3)
theorem mul_le_right {n m : } (H : n ≤ m) (k : ) : n * k ≤ m * k
:= mul_comm k m ▸ mul_comm k n ▸ (mul_le_left H k)
theorem mul_le {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l
:= le_trans (mul_le_right H1 m) (mul_le_left H2 k)
-- mul_le_[left|right]_inv below
-------------------------------------------------- lt
definition lt (n m : ) := succ n ≤ m
infix `<`:50 := lt
theorem lt_intro {n m k : } (H : succ n + k = m) : n < m
:= le_intro H
theorem lt_elim {n m : } (H : n < m) : ∃ k, succ n + k = m
:= le_elim H
theorem lt_intro2 (n m : ) : n < n + succ m
:= lt_intro (add_move_succ n m)
-------------------------------------------------- ge, gt
definition ge (n m : ) := m ≤ n
infix `>=`:50 := ge
infix `≥`:50 := ge
definition gt (n m : ) := m < n
infix `>`:50 := gt
---------- basic facts
theorem lt_ne {n m : } (H : n < m) : n ≠ m
:= and_elim_right (succ_le_left_inv H)
theorem lt_irrefl (n : ) : ¬ n < n
:= assume H : n < n, absurd (refl n) (lt_ne H)
theorem lt_zero (n : ) : 0 < succ n
:= succ_le (zero_le n)
theorem lt_zero_inv (n : ) : ¬ n < 0
:= assume H : n < 0,
have H2 : succ n = 0, from le_zero_inv H,
absurd H2 (succ_ne_zero n)
theorem lt_positive {n m : } (H : n < m) : ∃k, m = succ k
:= discriminate
(take (Hm : m = 0), absurd_elim _ (subst Hm H) (lt_zero_inv n))
(take (l : ) (Hm : m = succ l), exists_intro l Hm)
---------- interaction with le
theorem lt_imp_le_succ {n m : } (H : n < m) : succ n ≤ m
:= H
theorem le_succ_imp_lt {n m : } (H : succ n ≤ m) : n < m
:= H
theorem self_lt_succ (n : ) : n < succ n
:= le_refl (succ n)
theorem lt_imp_le {n m : } (H : n < m) : n ≤ m
:= and_elim_left (succ_le_imp_le_and_ne H)
theorem le_imp_lt_or_eq {n m : } (H : n ≤ m) : n < m n = m
:= le_imp_succ_le_or_eq H
theorem le_ne_imp_lt {n m : } (H1 : n ≤ m) (H2 : n ≠ m) : n < m
:= le_ne_imp_succ_le H1 H2
theorem le_imp_lt_succ {n m : } (H : n ≤ m) : n < succ m
:= succ_le H
theorem lt_succ_imp_le {n m : } (H : n < succ m) : n ≤ m
:= succ_le_cancel H
---------- trans, antisym
theorem lt_le_trans {n m k : } (H1 : n < m) (H2 : m ≤ k) : n < k
:= le_trans H1 H2
theorem le_lt_trans {n m k : } (H1 : n ≤ m) (H2 : m < k) : n < k
:= le_trans (succ_le H1) H2
theorem lt_trans {n m k : } (H1 : n < m) (H2 : m < k) : n < k
:= lt_le_trans H1 (lt_imp_le H2)
theorem le_imp_not_gt {n m : } (H : n ≤ m) : ¬ n > m
:= assume H2 : m < n, absurd (le_lt_trans H H2) (lt_irrefl n)
theorem lt_imp_not_ge {n m : } (H : n < m) : ¬ n ≥ m
:= assume H2 : m ≤ n, absurd (lt_le_trans H H2) (lt_irrefl n)
theorem lt_antisym {n m : } (H : n < m) : ¬ m < n
:= le_imp_not_gt (lt_imp_le H)
---------- interaction with add
theorem add_lt_left {n m : } (H : n < m) (k : ) : k + n < k + m
:= add_succ_right k n ▸ add_le_left H k
theorem add_lt_right {n m : } (H : n < m) (k : ) : n + k < m + k
:= add_comm k m ▸ add_comm k n ▸ add_lt_left H k
theorem add_le_lt {n m k l : } (H1 : n ≤ k) (H2 : m < l) : n + m < k + l
:= le_lt_trans (add_le_right H1 m) (add_lt_left H2 k)
theorem add_lt_le {n m k l : } (H1 : n < k) (H2 : m ≤ l) : n + m < k + l
:= lt_le_trans (add_lt_right H1 m) (add_le_left H2 k)
theorem add_lt {n m k l : } (H1 : n < k) (H2 : m < l) : n + m < k + l
:= add_lt_le H1 (lt_imp_le H2)
theorem add_lt_left_inv {n m k : } (H : k + n < k + m) : n < m
:= add_le_left_inv (add_succ_right k n⁻¹ ▸ H)
theorem add_lt_right_inv {n m k : } (H : n + k < m + k) : n < m
:= add_lt_left_inv (add_comm m k ▸ add_comm n k ▸ H)
---------- interaction with succ (see also the interaction with le)
theorem succ_lt {n m : } (H : n < m) : succ n < succ m
:= add_one m ▸ add_one n ▸ add_lt_right H 1
theorem succ_lt_inv {n m : } (H : succ n < succ m) : n < m
:= add_lt_right_inv (add_one m⁻¹ ▸ add_one n⁻¹ ▸ H)
theorem lt_self_succ (n : ) : n < succ n
:= le_refl (succ n)
theorem succ_lt_right {n m : } (H : n < m) : n < succ m
:= lt_trans H (lt_self_succ m)
---------- totality of lt and le
theorem le_or_lt (n m : ) : n ≤ m m < n
:= induction_on n
(or_intro_left _ (zero_le m))
(take (k : ),
assume IH : k ≤ m m < k,
or_elim IH
(assume H : k ≤ m,
obtain (l : ) (Hl : k + l = m), from le_elim H,
discriminate
(assume H2 : l = 0,
have H3 : m = k,
from calc
m = k + l : symm Hl
... = k + 0 : {H2}
... = k : add_zero_right k,
have H4 : m < succ k, from subst H3 (lt_self_succ m),
or_intro_right _ H4)
(take l2 : ,
assume H2 : l = succ l2,
have H3 : succ k + l2 = m,
from calc
succ k + l2 = k + succ l2 : add_move_succ k l2
... = k + l : {symm H2}
... = m : Hl,
or_intro_left _ (le_intro H3)))
(assume H : m < k, or_intro_right _ (succ_lt_right H)))
theorem trichotomy_alt (n m : ) : (n < m n = m) m < n
:= or_imp_or (le_or_lt n m) (assume H : n ≤ m, le_imp_lt_or_eq H) (assume H : m < n, H)
theorem trichotomy (n m : ) : n < m n = m m < n
:= iff_elim_left (or_assoc _ _ _) (trichotomy_alt n m)
theorem le_total (n m : ) : n ≤ m m ≤ n
:= or_imp_or (le_or_lt n m) (assume H : n ≤ m, H) (assume H : m < n, lt_imp_le H)
-- interaction with mul under "positivity"
theorem strong_induction_on {P : → Prop} (n : ) (IH : ∀n, (∀m, m < n → P m) → P n) : P n
:= have stronger : ∀k, k ≤ n → P k, from
induction_on n
(take (k : ),
assume H : k ≤ 0,
have H2 : k = 0, from le_zero_inv H,
have H3 : ∀m, m < k → P m, from
(take m : ,
assume H4 : m < k,
have H5 : m < 0, from subst H2 H4,
absurd_elim _ H5 (lt_zero_inv m)),
show P k, from IH k H3)
(take l : ,
assume IHl : ∀k, k ≤ l → P k,
take k : ,
assume H : k ≤ succ l,
or_elim (succ_le_right_inv H)
(assume H2 : k ≤ l, show P k, from IHl k H2)
(assume H2 : k = succ l,
have H3 : ∀m, m < k → P m, from
(take m : ,
assume H4 : m < k,
have H5 : m ≤ l, from lt_succ_imp_le (subst H2 H4),
show P m, from IHl m H5),
show P k, from IH k H3)),
stronger n (le_refl n)
theorem case_strong_induction_on {P : → Prop} (a : ) (H0 : P 0) (Hind : ∀(n : ), (∀m, m ≤ n → P m) → P (succ n)) : P a
:= strong_induction_on a
(take n, case n
(assume H : (∀m, m < 0 → P m), H0)
(take n, assume H : (∀m, m < succ n → P m),
Hind n (take m, assume H1 : m ≤ n, H m (le_imp_lt_succ H1))))
theorem add_eq_self {n m : } (H : n + m = n) : m = 0
:= discriminate
(take Hm : m = 0, Hm)
(take k : ,
assume Hm : m = succ k,
have H2 : succ n + k = n,
from calc
succ n + k = n + succ k : add_move_succ n k
... = n + m : {symm Hm}
... = n : H,
have H3 : n < n, from lt_intro H2,
have H4 : n ≠ n, from lt_ne H3,
absurd_elim _ (refl n) H4)
-------------------------------------------------- positivity
-- we use " _ > 0" as canonical way of denoting that a number is positive
---------- basic
theorem zero_or_positive (n : ) : n = 0 n > 0
:= or_imp_or (or_swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H) (take H : n > 0, H)
theorem succ_positive {n m : } (H : n = succ m) : n > 0
:= subst (symm H) (lt_zero m)
theorem ne_zero_positive {n : } (H : n ≠ 0) : n > 0
:= or_elim (zero_or_positive n) (take H2 : n = 0, absurd_elim _ H2 H) (take H2 : n > 0, H2)
theorem pos_imp_eq_succ {n : } (H : n > 0) : ∃l, n = succ l
:= discriminate
(take H2, absurd_elim _ (subst H2 H) (lt_irrefl 0))
(take l Hl, exists_intro l Hl)
theorem add_positive_right (n : ) {k : } (H : k > 0) : n + k > n
:= obtain (l : ) (Hl : k = succ l), from pos_imp_eq_succ H,
subst (symm Hl) (lt_intro2 n l)
theorem add_positive_left (n : ) {k : } (H : k > 0) : k + n > n
:= subst (add_comm n k) (add_positive_right n H)
-- Positivity
-- ---------
--
-- Writing "t > 0" is the preferred way to assert that a natural number is positive.
-- ### basic
-- See also succ_pos.
theorem succ_pos (n : ) : 0 < succ n
:= succ_le (zero_le n)
theorem case_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀y, y > 0 → P y) : P y
:= case y H0 (take y', H1 _ (succ_pos _))
theorem zero_or_pos (n : ) : n = 0 n > 0
:= imp_or_left (or_swap (le_imp_lt_or_eq (zero_le n))) (take H : 0 = n, symm H)
theorem succ_imp_pos {n m : } (H : n = succ m) : n > 0
:= subst (symm H) (succ_pos m)
theorem ne_zero_pos {n : } (H : n ≠ 0) : n > 0
:= or_elim (zero_or_pos n) (take H2 : n = 0, absurd_elim _ H2 H) (take H2 : n > 0, H2)
theorem add_pos_right (n : ) {k : } (H : k > 0) : n + k > n
:= subst (add_zero_right n) (add_lt_left H n)
theorem add_pos_left (n : ) {k : } (H : k > 0) : k + n > n
:= subst (add_comm n k) (add_pos_right n H)
---------- mul
theorem mul_positive {n m : } (Hn : n > 0) (Hm : m > 0) : n * m > 0
:= obtain (k : ) (Hk : n = succ k), from pos_imp_eq_succ Hn,
obtain (l : ) (Hl : m = succ l), from pos_imp_eq_succ Hm,
succ_positive (calc
n * m = succ k * m : {Hk}
... = succ k * succ l : {Hl}
... = succ k * l + succ k : mul_succ_right (succ k) l
... = succ (succ k * l + k) : add_succ_right _ _)
theorem mul_positive_inv_left {n m : } (H : n * m > 0) : n > 0
:= discriminate
(assume H2 : n = 0,
have H3 : n * m = 0,
from calc
n * m = 0 * m : {H2}
... = 0 : mul_zero_left m,
have H4 : 0 > 0, from subst H3 H,
absurd_elim _ H4 (lt_irrefl 0))
(take l : ,
assume Hl : n = succ l,
subst (symm Hl) (lt_zero l))
theorem mul_positive_inv_right {n m : } (H : n * m > 0) : m > 0
:= mul_positive_inv_left (subst (mul_comm n m) H)
theorem mul_left_inj {n m k : } (Hn : n > 0) (H : n * m = n * k) : m = k
:=
have general : ∀m, n * m = n * k → m = k, from
induction_on k
(take m:,
assume H : n * m = n * 0,
have H2 : n * m = 0,
from calc
n * m = n * 0 : H
... = 0 : mul_zero_right n,
have H3 : n = 0 m = 0, from mul_eq_zero H2,
resolve_right H3 (ne_symm (lt_ne Hn)))
(take (l : ),
assume (IH : ∀ m, n * m = n * l → m = l),
take (m : ),
assume (H : n * m = n * succ l),
have H2 : n * succ l > 0, from mul_positive Hn (lt_zero l),
have H3 : m > 0, from mul_positive_inv_right (subst (symm H) H2),
obtain (l2:) (Hm : m = succ l2), from pos_imp_eq_succ H3,
have H4 : n * l2 + n = n * l + n,
from calc
n * l2 + n = n * succ l2 : symm (mul_succ_right n l2)
... = n * m : {symm Hm}
... = n * succ l : H
... = n * l + n : mul_succ_right n l,
have H5 : n * l2 = n * l, from add_cancel_right H4,
calc
m = succ l2 : Hm
... = succ l : {IH l2 H5}),
general m H
theorem mul_right_inj {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k
:= mul_left_inj Hm (subst (mul_comm k m) (subst (mul_comm n m) H))
-- mul_eq_one below
---------- interaction of mul with le and lt
theorem mul_lt_left {n m k : } (Hk : k > 0) (H : n < m) : k * n < k * m
:=
have H2 : k * n < k * n + k, from add_positive_right (k * n) Hk,
have H3 : k * n + k ≤ k * m, from subst (mul_succ_right k n) (mul_le_left H k),
lt_le_trans H2 H3
theorem mul_lt_right {n m k : } (Hk : k > 0) (H : n < m) : n * k < m * k
:= subst (mul_comm k m) (subst (mul_comm k n) (mul_lt_left Hk H))
theorem mul_le_lt {n m k l : } (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) : n * m < k * l
:= le_lt_trans (mul_le_right H1 m) (mul_lt_left Hk H2)
theorem mul_lt_le {n m k l : } (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) : n * m < k * l
:= le_lt_trans (mul_le_left H2 n) (mul_lt_right Hl H1)
theorem mul_lt {n m k l : } (H1 : n < k) (H2 : m < l) : n * m < k * l
:=
have H3 : n * m ≤ k * m, from mul_le_right (lt_imp_le H1) m,
have H4 : k * m < k * l, from mul_lt_left (le_lt_trans (zero_le n) H1) H2,
le_lt_trans H3 H4
theorem mul_lt_left_inv {n m k : } (H : k * n < k * m) : n < m
:=
have general : ∀ m, k * n < k * m → n < m, from
induction_on n
(take m : ,
assume H2 : k * 0 < k * m,
have H3 : 0 < k * m, from mul_zero_right k ▸ H2,
show 0 < m, from mul_positive_inv_right H3)
(take l : ,
assume IH : ∀ m, k * l < k * m → l < m,
take m : ,
assume H2 : k * succ l < k * m,
have H3 : 0 < k * m, from le_lt_trans (zero_le _) H2,
have H4 : 0 < m, from mul_positive_inv_right H3,
obtain (l2 : ) (Hl2 : m = succ l2), from pos_imp_eq_succ H4,
have H5 : k * l + k < k * m, from mul_succ_right k l ▸ H2,
have H6 : k * l + k < k * succ l2, from Hl2 ▸ H5,
have H7 : k * l + k < k * l2 + k, from mul_succ_right k l2 ▸ H6,
have H8 : k * l < k * l2, from add_lt_right_inv H7,
have H9 : l < l2, from IH l2 H8,
have H10 : succ l < succ l2, from succ_lt H9,
show succ l < m, from Hl2⁻¹ ▸ H10),
general m H
theorem mul_lt_right_inv {n m k : } (H : n * k < m * k) : n < m
:= mul_lt_left_inv (mul_comm m k ▸ mul_comm n k ▸ H)
theorem mul_le_left_inv {n m k : } (H : succ k * n ≤ succ k * m) : n ≤ m
:=
have H2 : succ k * n < succ k * m + succ k, from le_lt_trans H (lt_intro2 _ _),
have H3 : succ k * n < succ k * succ m, from subst (symm (mul_succ_right (succ k) m)) H2,
have H4 : n < succ m, from mul_lt_left_inv H3,
show n ≤ m, from lt_succ_imp_le H4
theorem mul_le_right_inv {n m k : } (H : n * succ m ≤ k * succ m) : n ≤ k
:= mul_le_left_inv (subst (mul_comm k (succ m)) (subst (mul_comm n (succ m)) H))
theorem mul_eq_one_left {n m : } (H : n * m = 1) : n = 1
:=
have H2 : n * m > 0, from subst (symm H) (lt_zero 0),
have H3 : n > 0, from mul_positive_inv_left H2,
have H4 : m > 0, from mul_positive_inv_right H2,
or_elim (le_or_lt n 1)
(assume H5 : n ≤ 1,
show n = 1, from le_antisym H5 H3)
(assume H5 : n > 1,
have H6 : n * m ≥ 2 * 1, from mul_le H5 H4,
have H7 : 1 ≥ 2, from subst (mul_one_right 2) (subst H H6),
absurd_elim _ (self_lt_succ 1) (le_imp_not_gt H7))
theorem mul_eq_one_right {n m : } (H : n * m = 1) : m = 1
:= mul_eq_one_left (subst (mul_comm n m) H)
theorem mul_eq_one {n m : } (H : n * m = 1) : n = 1 ∧ m = 1
:= and_intro (mul_eq_one_left H) (mul_eq_one_right H)
-------------------------------------------------- sub
definition sub (n m : ) : := nat_rec n (fun m x, pred x) m
infixl `-`:65 := sub
theorem sub_zero_right (n : ) : n - 0 = n
theorem sub_succ_right (n m : ) : n - succ m = pred (n - m)
theorem sub_zero_left (n : ) : 0 - n = 0
:= induction_on n (sub_zero_right 0)
(take k : ,
assume IH : 0 - k = 0,
calc
0 - succ k = pred (0 - k) : sub_succ_right 0 k
... = pred 0 : {IH}
... = 0 : pred_zero)
theorem sub_succ_succ (n m : ) : succ n - succ m = n - m
:= induction_on m
(calc
succ n - 1 = pred (succ n - 0) : sub_succ_right (succ n) 0
... = pred (succ n) : {sub_zero_right (succ n)}
... = n : pred_succ n
... = n - 0 : symm (sub_zero_right n))
(take k : ,
assume IH : succ n - succ k = n - k,
calc
succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right (succ n) (succ k)
... = pred (n - k) : {IH}
... = n - succ k : symm (sub_succ_right n k))
theorem sub_one (n : ) : n - 1 = pred n
:= calc
n - 1 = pred (n - 0) : sub_succ_right n 0
... = pred n : {sub_zero_right n}
theorem sub_self (n : ) : n - n = 0
:= induction_on n (sub_zero_right 0) (take k IH, trans (sub_succ_succ k k) IH)
theorem sub_add_add_right (n m k : ) : (n + k) - (m + k) = n - m
:= induction_on k
(calc
(n + 0) - (m + 0) = n - (m + 0) : {add_zero_right _}
... = n - m : {add_zero_right _})
(take l : ,
assume IH : (n + l) - (m + l) = n - m,
calc
(n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ_right _ _}
... = succ (n + l) - succ (m + l) : {add_succ_right _ _}
... = (n + l) - (m + l) : sub_succ_succ _ _
... = n - m : IH)
theorem sub_add_add_left (n m k : ) : (k + n) - (k + m) = n - m
:= subst (add_comm m k) (subst (add_comm n k) (sub_add_add_right n m k))
theorem sub_add_left (n m : ) : n + m - m = n
:= induction_on m
(subst (symm (add_zero_right n)) (sub_zero_right n))
(take k : ,
assume IH : n + k - k = n,
calc
n + succ k - succ k = succ (n + k) - succ k : {add_succ_right n k}
... = n + k - k : sub_succ_succ _ _
... = n : IH)
theorem sub_sub (n m k : ) : n - m - k = n - (m + k)
:= induction_on k
(calc
n - m - 0 = n - m : sub_zero_right _
... = n - (m + 0) : {symm (add_zero_right m)})
(take l : ,
assume IH : n - m - l = n - (m + l),
calc
n - m - succ l = pred (n - m - l) : sub_succ_right (n - m) l
... = pred (n - (m + l)) : {IH}
... = n - succ (m + l) : symm (sub_succ_right n (m + l))
... = n - (m + succ l) : {symm (add_succ_right m l)})
theorem succ_sub_sub (n m k : ) : succ n - m - succ k = n - m - k
:= calc
succ n - m - succ k = succ n - (m + succ k) : sub_sub _ _ _
... = succ n - succ (m + k) : {add_succ_right m k}
... = n - (m + k) : sub_succ_succ _ _
... = n - m - k : symm (sub_sub n m k)
theorem sub_add_right_eq_zero (n m : ) : n - (n + m) = 0
:= calc
n - (n + m) = n - n - m : symm (sub_sub n n m)
... = 0 - m : {sub_self n}
... = 0 : sub_zero_left m
theorem sub_comm (m n k : ) : m - n - k = m - k - n
:= calc
m - n - k = m - (n + k) : sub_sub m n k
... = m - (k + n) : {add_comm n k}
... = m - k - n : symm (sub_sub m k n)
theorem succ_sub_one (n : ) : succ n - 1 = n
:= sub_succ_succ n 0 ⬝ sub_zero_right n
---------- mul
theorem mul_pred_left (n m : ) : pred n * m = n * m - m
:= induction_on n
(calc
pred 0 * m = 0 * m : {pred_zero}
... = 0 : mul_zero_left _
... = 0 - m : symm (sub_zero_left m)
... = 0 * m - m : {symm (mul_zero_left m)})
(take k : ,
assume IH : pred k * m = k * m - m,
calc
pred (succ k) * m = k * m : {pred_succ k}
... = k * m + m - m : symm (sub_add_left _ _)
... = succ k * m - m : {symm (mul_succ_left k m)})
theorem mul_pred_right (n m : ) : n * pred m = n * m - n
:= calc n * pred m = pred m * n : mul_comm _ _
... = m * n - n : mul_pred_left m n
... = n * m - n : {mul_comm m n}
theorem mul_sub_distr_left (n m k : ) : (n - m) * k = n * k - m * k
:= induction_on m
(calc
(n - 0) * k = n * k : {sub_zero_right n}
... = n * k - 0 : symm (sub_zero_right _)
... = n * k - 0 * k : {symm (mul_zero_left _)})
(take l : ,
assume IH : (n - l) * k = n * k - l * k,
calc
(n - succ l) * k = pred (n - l) * k : {sub_succ_right n l}
... = (n - l) * k - k : mul_pred_left _ _
... = n * k - l * k - k : {IH}
... = n * k - (l * k + k) : sub_sub _ _ _
... = n * k - (succ l * k) : {symm (mul_succ_left l k)})
theorem mul_sub_distr_right (n m k : ) : n * (m - k) = n * m - n * k
:= calc
n * (m - k) = (m - k) * n : mul_comm _ _
... = m * n - k * n : mul_sub_distr_left _ _ _
... = n * m - k * n : {mul_comm _ _}
... = n * m - n * k : {mul_comm _ _}
-------------------------------------------------- max, min, iteration, maybe: sub, div
theorem succ_sub {m n : } : m ≥ n → succ m - n = succ (m - n)
:= sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
succ k - 0 = succ k : sub_zero_right (succ k)
... = succ (k - 0) : {symm (sub_zero_right k)})
(take k,
assume H : succ k ≤ 0,
absurd_elim _ H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → succ l - k = succ (l - k),
take H : succ k ≤ succ l,
calc
succ (succ l) - succ k = succ l - k : sub_succ_succ (succ l) k
... = succ (l - k) : IH (succ_le_cancel H)
... = succ (succ l - succ k) : {symm (sub_succ_succ l k)})
theorem le_imp_sub_eq_zero {n m : } (H : n ≤ m) : n - m = 0
:= obtain (k : ) (Hk : n + k = m), from le_elim H, subst Hk (sub_add_right_eq_zero n k)
theorem add_sub_le {n m : } : n ≤ m → n + (m - n) = m
:= sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
0 + (k - 0) = k - 0 : add_zero_left (k - 0)
... = k : sub_zero_right k)
(take k, assume H : succ k ≤ 0, absurd_elim _ H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → k + (l - k) = l,
take H : succ k ≤ succ l,
calc
succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ l k}
... = succ (k + (l - k)) : add_succ_left k (l - k)
... = succ l : {IH (succ_le_cancel H)})
theorem add_sub_ge_left {n m : } : n ≥ m → n - m + m = n
:= subst (add_comm m (n - m)) add_sub_le
theorem add_sub_ge {n m : } (H : n ≥ m) : n + (m - n) = n
:= calc
n + (m - n) = n + 0 : {le_imp_sub_eq_zero H}
... = n : add_zero_right n
theorem add_sub_le_left {n m : } : n ≤ m → n - m + m = m
:= subst (add_comm m (n - m)) add_sub_ge
theorem le_add_sub_left (n m : ) : n ≤ n + (m - n)
:= or_elim (le_total n m)
(assume H : n ≤ m, subst (symm (add_sub_le H)) H)
(assume H : m ≤ n, subst (symm (add_sub_ge H)) (le_refl n))
theorem le_add_sub_right (n m : ) : m ≤ n + (m - n)
:= or_elim (le_total n m)
(assume H : n ≤ m, subst (symm (add_sub_le H)) (le_refl m))
(assume H : m ≤ n, subst (symm (add_sub_ge H)) H)
theorem sub_split {P : → Prop} {n m : } (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k)
: P (n - m)
:= or_elim (le_total n m)
(assume H3 : n ≤ m, subst (symm (le_imp_sub_eq_zero H3)) (H1 H3))
(assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3))
theorem sub_le_self (n m : ) : n - m ≤ n
:=
sub_split
(assume H : n ≤ m, zero_le n)
(take k : , assume H : m + k = n, le_intro (subst (add_comm m k) H))
theorem le_elim_sub (n m : ) (H : n ≤ m) : ∃k, m - k = n
:=
obtain (k : ) (Hk : n + k = m), from le_elim H,
exists_intro k
(calc
m - k = n + k - k : {symm Hk}
... = n : sub_add_left n k)
theorem add_sub_assoc {m k : } (H : k ≤ m) (n : ) : n + m - k = n + (m - k)
:= have l1 : k ≤ m → n + m - k = n + (m - k), from
sub_induction k m
(take m : ,
assume H : 0 ≤ m,
calc
n + m - 0 = n + m : sub_zero_right (n + m)
... = n + (m - 0) : {symm (sub_zero_right m)})
(take k : , assume H : succ k ≤ 0, absurd_elim _ H (not_succ_zero_le k))
(take k m,
assume IH : k ≤ m → n + m - k = n + (m - k),
take H : succ k ≤ succ m,
calc
n + succ m - succ k = succ (n + m) - succ k : {add_succ_right n m}
... = n + m - k : sub_succ_succ (n + m) k
... = n + (m - k) : IH (succ_le_cancel H)
... = n + (succ m - succ k) : {symm (sub_succ_succ m k)}),
l1 H
theorem sub_eq_zero_imp_le {n m : } : n - m = 0 → n ≤ m
:= sub_split
(assume H1 : n ≤ m, assume H2 : 0 = 0, H1)
(take k : ,
assume H1 : m + k = n,
assume H2 : k = 0,
have H3 : n = m, from subst (add_zero_right m) (subst H2 (symm H1)),
subst H3 (le_refl n))
theorem sub_sub_split {P : → Prop} {n m : } (H1 : ∀k, n = m + k -> P k 0)
(H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n)
:= or_elim (le_total n m)
(assume H3 : n ≤ m,
le_imp_sub_eq_zero H3⁻¹ ▸ (H2 (m - n) (add_sub_le H3⁻¹)))
(assume H3 : m ≤ n,
le_imp_sub_eq_zero H3⁻¹ ▸ (H1 (n - m) (add_sub_le H3⁻¹)))
theorem sub_intro {n m k : } (H : n + m = k) : k - n = m
:= have H2 : k - n + n = m + n, from
calc
k - n + n = k : add_sub_ge_left (le_intro H)
... = n + m : symm H
... = m + n : add_comm n m,
add_cancel_right H2
theorem sub_lt {x y : } (xpos : x > 0) (ypos : y > 0) : x - y < x
:= obtain (x' : ) (xeq : x = succ x'), from pos_imp_eq_succ xpos,
obtain (y' : ) (yeq : y = succ y'), from pos_imp_eq_succ ypos,
have xsuby_eq : x - y = x' - y', from
calc
x - y = succ x' - y : {xeq}
... = succ x' - succ y' : {yeq}
... = x' - y' : sub_succ_succ _ _,
have H1 : x' - y' ≤ x', from sub_le_self _ _,
have H2 : x' < succ x', from self_lt_succ _,
show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2
-- Max, min, iteration, and absolute difference
-- --------------------------------------------
definition max (n m : ) : := n + (m - n)
definition min (n m : ) : := m - (m - n)
theorem max_le {n m : } (H : n ≤ m) : n + (m - n) = m := add_sub_le H
theorem max_ge {n m : } (H : n ≥ m) : n + (m - n) = n := add_sub_ge H
theorem left_le_max (n m : ) : n ≤ n + (m - n) := le_add_sub_left n m
theorem right_le_max (n m : ) : m ≤ max n m := le_add_sub_right n m
-- ### absolute difference
-- This section is still incomplete
definition dist (n m : ) := (n - m) + (m - n)
theorem dist_comm (n m : ) : dist n m = dist m n
:= add_comm (n - m) (m - n)
theorem dist_eq_zero {n m : } (H : dist n m = 0) : n = m
:=
have H2 : n - m = 0, from add_eq_zero_left H,
have H3 : n ≤ m, from sub_eq_zero_imp_le H2,
have H4 : m - n = 0, from add_eq_zero_right H,
have H5 : m ≤ n, from sub_eq_zero_imp_le H4,
le_antisym H3 H5
theorem dist_le {n m : } (H : n ≤ m) : dist n m = m - n
:= calc
dist n m = (n - m) + (m - n) : refl _
... = 0 + (m - n) : {le_imp_sub_eq_zero H}
... = m - n : add_zero_left (m - n)
theorem dist_ge {n m : } (H : n ≥ m) : dist n m = n - m
:= subst (dist_comm m n) (dist_le H)
theorem dist_zero_right (n : ) : dist n 0 = n
:= trans (dist_ge (zero_le n)) (sub_zero_right n)
theorem dist_zero_left (n : ) : dist 0 n = n
:= trans (dist_le (zero_le n)) (sub_zero_right n)
theorem dist_intro {n m k : } (H : n + m = k) : dist k n = m
:= calc
dist k n = k - n : dist_ge (le_intro H)
... = m : sub_intro H
theorem dist_add_right (n k m : ) : dist (n + k) (m + k) = dist n m
:=
calc
dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : refl _
... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right _ _ _}
... = (n - m) + (m - n) : {sub_add_add_right _ _ _}
theorem dist_add_left (k n m : ) : dist (k + n) (k + m) = dist n m
:= subst (add_comm m k) (subst (add_comm n k) (dist_add_right n k m))
theorem dist_ge_add_right {n m : } (H : n ≥ m) : dist n m + m = n
:= calc
dist n m + m = n - m + m : {dist_ge H}
... = n : add_sub_ge_left H
theorem dist_eq_intro {n m k l : } (H : n + m = k + l) : dist n k = dist l m
:= calc
dist n k = dist (n + m) (k + m) : symm (dist_add_right n m k)
... = dist (k + l) (k + m) : {H}
... = dist l m : dist_add_left k l m
end nat