bd9e47c82c
other changes: - move result about connectedness of susp to homotopy.susp - improved definition of circle multiplication - improved the interface to join
51 lines
1.6 KiB
Text
51 lines
1.6 KiB
Text
/-
|
||
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Floris van Doorn, Clive Newstead
|
||
|
||
-/
|
||
|
||
import algebra.homotopy_group .sphere
|
||
|
||
open eq is_trunc trunc_index pointed algebra trunc nat is_conn fiber pointed
|
||
|
||
namespace is_trunc
|
||
-- Lemma 8.3.1
|
||
theorem trivial_homotopy_group_of_is_trunc (A : Type*) (n k : ℕ) [is_trunc n A] (H : n ≤ k)
|
||
: is_contr (πg[k+1] A) :=
|
||
begin
|
||
apply is_trunc_trunc_of_is_trunc,
|
||
apply is_contr_loop_of_is_trunc,
|
||
apply @is_trunc_of_le A n _,
|
||
rewrite [succ_sub_two_succ k],
|
||
exact of_nat_le_of_nat H,
|
||
end
|
||
|
||
-- Lemma 8.3.2
|
||
theorem trivial_homotopy_group_of_is_conn (A : Type*) {k n : ℕ} (H : k ≤ n) [is_conn n A]
|
||
: is_contr (π[k] A) :=
|
||
begin
|
||
have H3 : is_contr (ptrunc k A), from is_conn_of_le A (of_nat_le_of_nat H),
|
||
have H4 : is_contr (Ω[k](ptrunc k A)), from !is_trunc_loop_of_is_trunc,
|
||
apply is_trunc_equiv_closed_rev,
|
||
{ apply equiv_of_pequiv (phomotopy_group_pequiv_loop_ptrunc k A)}
|
||
end
|
||
|
||
-- Corollary 8.3.3
|
||
section
|
||
open sphere sphere.ops sphere_index
|
||
theorem homotopy_group_sphere_le (n k : ℕ) (H : k < n) : is_contr (π[k] (S. n)) :=
|
||
begin
|
||
cases n with n,
|
||
{ exfalso, apply not_lt_zero, exact H},
|
||
{ have H2 : k ≤ n, from le_of_lt_succ H,
|
||
apply @(trivial_homotopy_group_of_is_conn _ H2) }
|
||
end
|
||
end
|
||
|
||
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B)
|
||
[H : is_conn_fun n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
|
||
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
|
||
|
||
|
||
end is_trunc
|