lean2/library/logic/connectives/instances.lean

133 lines
4.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Jeremy Avigad
import logic.connectives.basic logic.connectives.eq struc.relation
namespace relation
using relation
-- Congruences for logic
-- ---------------------
theorem congr_not : congr iff iff not :=
congr_mk
(take a b,
assume H : a ↔ b, iff_intro
(assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2)))
theorem congr_and : congr2 iff iff iff and :=
congr2_mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_or : congr2 iff iff iff or :=
congr2_mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2))
(assume H3 : b1 b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2)))
theorem congr_imp : congr2 iff iff iff imp :=
congr2_mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1))))
theorem congr_iff : congr2 iff iff iff iff :=
congr2_mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff_intro
(assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2))
(assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2))))
-- theorem congr_const_iff [instance] := congr.const iff iff_refl
definition congr_not_compose [instance] := congr.compose congr_not
definition congr_and_compose [instance] := congr.compose21 congr_and
definition congr_or_compose [instance] := congr.compose21 congr_or
definition congr_implies_compose [instance] := congr.compose21 congr_imp
definition congr_iff_compose [instance] := congr.compose21 congr_iff
-- Generalized substitution
-- ------------------------
-- TODO: note that the target has to be "iff". Otherwise, there is not enough
-- information to infer an mp-like relation.
namespace general_operations
theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ {C : congr R iff P}
{a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (congr.app C H) H1
end general_operations
-- = is an equivalence relation
-- ----------------------------
theorem is_reflexive_eq [instance] (T : Type) : relation.is_reflexive (@eq T) :=
relation.is_reflexive_mk (@refl T)
theorem is_symmetric_eq [instance] (T : Type) : relation.is_symmetric (@eq T) :=
relation.is_symmetric_mk (@symm T)
theorem is_transitive_eq [instance] (T : Type) : relation.is_transitive (@eq T) :=
relation.is_transitive_mk (@trans T)
-- TODO: this is only temporary, needed to inform Lean that is_equivalence is a class
theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) :=
relation.is_equivalence_mk _ _ _
-- iff is an equivalence relation
-- ------------------------------
theorem is_reflexive_iff [instance] : relation.is_reflexive iff :=
relation.is_reflexive_mk (@iff_refl)
theorem is_symmetric_iff [instance] : relation.is_symmetric iff :=
relation.is_symmetric_mk (@iff_symm)
theorem is_transitive_iff [instance] : relation.is_transitive iff :=
relation.is_transitive_mk (@iff_trans)
-- Mp-like for iff
-- ---------------
theorem mp_like_iff [instance] (a b : Prop) (H : a ↔ b) : @relation.mp_like iff a b H :=
relation.mp_like_mk (iff_elim_left H)
-- Substition for iff
-- ------------------
theorem subst_iff {P : Prop → Prop} {C : congr iff iff P} {a b : Prop} (H : a ↔ b) (H1 : P a) :
P b :=
@general_operations.subst Prop iff P C a b H H1
-- Support for calculations with iff
-- ----------------
calc_subst subst_iff
namespace iff_ops
postfix `⁻¹`:100 := iff_symm
infixr `⬝`:75 := iff_trans
infixr `▸`:75 := subst_iff
abbreviation refl := iff_refl
abbreviation symm := @iff_symm
abbreviation trans := @iff_trans
abbreviation subst := @subst_iff
abbreviation mp := @iff_mp
end iff_ops
end relation