42fbc63bb6
@avigad, @fpvandoorn, @rlewis1988, @dselsam I changed how transitive instances are named. The motivation is to avoid a naming collision problem found by Daniel. Before this commit, we were getting an error on the following file tests/lean/run/collision_bug.lean. Now, transitive instances contain the prefix "_trans_". It makes it clear this is an internal definition and it should not be used by users. This change also demonstrates (again) how the `rewrite` tactic is fragile. The problem is that the matching procedure used by it has very little support for solving matching constraints that involving type class instances. Eventually, we will need to reimplement `rewrite` using the new unification procedure used in blast. In the meantime, the workaround is to use `krewrite` (as usual).
613 lines
24 KiB
Text
613 lines
24 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
The rational numbers as a field generated by the integers, defined as the usual quotient.
|
||
-/
|
||
import data.int algebra.field
|
||
open int quot eq.ops
|
||
|
||
record prerat : Type :=
|
||
(num : ℤ) (denom : ℤ) (denom_pos : denom > 0)
|
||
|
||
/-
|
||
prerat: the representations of the rationals as integers num, denom, with denom > 0.
|
||
note: names are not protected, because it is not expected that users will open prerat.
|
||
-/
|
||
|
||
namespace prerat
|
||
|
||
/- the equivalence relation -/
|
||
|
||
definition equiv (a b : prerat) : Prop := num a * denom b = num b * denom a
|
||
|
||
infix ≡ := equiv
|
||
|
||
theorem equiv.refl [refl] (a : prerat) : a ≡ a := rfl
|
||
|
||
theorem equiv.symm [symm] {a b : prerat} (H : a ≡ b) : b ≡ a := !eq.symm H
|
||
|
||
theorem num_eq_zero_of_equiv {a b : prerat} (H : a ≡ b) (na_zero : num a = 0) : num b = 0 :=
|
||
have num a * denom b = 0, from !zero_mul ▸ na_zero ▸ rfl,
|
||
have num b * denom a = 0, from H ▸ this,
|
||
show num b = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero this) (ne_of_gt (denom_pos a))
|
||
|
||
theorem num_pos_of_equiv {a b : prerat} (H : a ≡ b) (na_pos : num a > 0) : num b > 0 :=
|
||
have num a * denom b > 0, from mul_pos na_pos (denom_pos b),
|
||
have num b * denom a > 0, from H ▸ this,
|
||
show num b > 0, from pos_of_mul_pos_right this (le_of_lt (denom_pos a))
|
||
|
||
theorem num_neg_of_equiv {a b : prerat} (H : a ≡ b) (na_neg : num a < 0) : num b < 0 :=
|
||
assert H₁ : num a * denom b = num b * denom a, from H,
|
||
assert num a * denom b < 0, from mul_neg_of_neg_of_pos na_neg (denom_pos b),
|
||
have -(-num b * denom a) < 0, begin rewrite [neg_mul_eq_neg_mul, neg_neg, -H₁], exact this end,
|
||
have -num b > 0, from pos_of_mul_pos_right (pos_of_neg_neg this) (le_of_lt (denom_pos a)),
|
||
neg_of_neg_pos this
|
||
|
||
theorem equiv_of_num_eq_zero {a b : prerat} (H1 : num a = 0) (H2 : num b = 0) : a ≡ b :=
|
||
by rewrite [↑equiv, H1, H2, *zero_mul]
|
||
|
||
theorem equiv.trans [trans] {a b c : prerat} (H1 : a ≡ b) (H2 : b ≡ c) : a ≡ c :=
|
||
decidable.by_cases
|
||
(suppose num b = 0,
|
||
have num a = 0, from num_eq_zero_of_equiv (equiv.symm H1) `num b = 0`,
|
||
have num c = 0, from num_eq_zero_of_equiv H2 `num b = 0`,
|
||
equiv_of_num_eq_zero `num a = 0` `num c = 0`)
|
||
(suppose num b ≠ 0,
|
||
have H3 : num b * denom b ≠ 0, from mul_ne_zero this (ne_of_gt (denom_pos b)),
|
||
have H4 : (num b * denom b) * (num a * denom c) = (num b * denom b) * (num c * denom a),
|
||
from calc
|
||
(num b * denom b) * (num a * denom c) = (num a * denom b) * (num b * denom c) :
|
||
by rewrite [*mul.assoc, *mul.left_comm (num a), *mul.left_comm (num b)]
|
||
... = (num b * denom a) * (num b * denom c) : {H1}
|
||
... = (num b * denom a) * (num c * denom b) : {H2}
|
||
... = (num b * denom b) * (num c * denom a) :
|
||
by rewrite [*mul.assoc, *mul.left_comm (denom a),
|
||
*mul.left_comm (denom b), mul.comm (denom a)],
|
||
eq_of_mul_eq_mul_left H3 H4)
|
||
|
||
theorem equiv.is_equivalence : equivalence equiv :=
|
||
mk_equivalence equiv equiv.refl @equiv.symm @equiv.trans
|
||
|
||
definition setoid : setoid prerat :=
|
||
setoid.mk equiv equiv.is_equivalence
|
||
|
||
/- field operations -/
|
||
|
||
definition of_int (i : int) : prerat := prerat.mk i 1 !of_nat_succ_pos
|
||
|
||
definition zero : prerat := of_int 0
|
||
|
||
definition one : prerat := of_int 1
|
||
|
||
private theorem mul_denom_pos (a b : prerat) : denom a * denom b > 0 :=
|
||
mul_pos (denom_pos a) (denom_pos b)
|
||
|
||
definition add (a b : prerat) : prerat :=
|
||
prerat.mk (num a * denom b + num b * denom a) (denom a * denom b) (mul_denom_pos a b)
|
||
|
||
definition mul (a b : prerat) : prerat :=
|
||
prerat.mk (num a * num b) (denom a * denom b) (mul_denom_pos a b)
|
||
|
||
definition neg (a : prerat) : prerat :=
|
||
prerat.mk (- num a) (denom a) (denom_pos a)
|
||
|
||
definition smul (a : ℤ) (b : prerat) (H : a > 0) : prerat :=
|
||
prerat.mk (a * num b) (a * denom b) (mul_pos H (denom_pos b))
|
||
|
||
theorem of_int_add (a b : ℤ) : of_int (a + b) ≡ add (of_int a) (of_int b) :=
|
||
by esimp [equiv, num, denom, one, add, of_int]; rewrite [*int.mul_one]
|
||
|
||
theorem of_int_mul (a b : ℤ) : of_int (a * b) ≡ mul (of_int a) (of_int b) :=
|
||
!equiv.refl
|
||
|
||
theorem of_int_neg (a : ℤ) : of_int (-a) ≡ neg (of_int a) :=
|
||
!equiv.refl
|
||
|
||
theorem of_int.inj {a b : ℤ} : of_int a ≡ of_int b → a = b :=
|
||
by rewrite [↑of_int, ↑equiv, *mul_one]; intros; assumption
|
||
|
||
definition inv : prerat → prerat
|
||
| inv (prerat.mk nat.zero d dp) := zero
|
||
| inv (prerat.mk (nat.succ n) d dp) := prerat.mk d (nat.succ n) !of_nat_succ_pos
|
||
| inv (prerat.mk -[1+n] d dp) := prerat.mk (-d) (nat.succ n) !of_nat_succ_pos
|
||
|
||
theorem equiv_zero_of_num_eq_zero {a : prerat} (H : num a = 0) : a ≡ zero :=
|
||
by rewrite [↑equiv, H, ↑zero, ↑num, ↑of_int, *zero_mul]
|
||
|
||
theorem num_eq_zero_of_equiv_zero {a : prerat} : a ≡ zero → num a = 0 :=
|
||
by rewrite [↑equiv, ↑zero, ↑of_int, mul_one, zero_mul]; intro H; exact H
|
||
|
||
theorem inv_zero {d : int} (dp : d > 0) : inv (mk nat.zero d dp) = zero :=
|
||
begin rewrite [↑inv, ▸*] end
|
||
|
||
theorem inv_zero' : inv zero = zero := inv_zero (of_nat_succ_pos nat.zero)
|
||
|
||
open nat
|
||
|
||
theorem inv_of_pos {n d : int} (np : n > 0) (dp : d > 0) : inv (mk n d dp) ≡ mk d n np :=
|
||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||
have (n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||
have d * n = d * nat.succ k, by rewrite [Hn', Hk],
|
||
Hn'⁻¹ ▸ (Hk⁻¹ ▸ this)
|
||
|
||
theorem inv_neg {n d : int} (np : n > 0) (dp : d > 0) : inv (mk (-n) d dp) ≡ mk (-d) n np :=
|
||
obtain (n' : nat) (Hn' : n = of_nat n'), from exists_eq_of_nat (le_of_lt np),
|
||
have (n' > nat.zero), from lt_of_of_nat_lt_of_nat (Hn' ▸ np),
|
||
obtain (k : nat) (Hk : n' = nat.succ k), from nat.exists_eq_succ_of_lt this,
|
||
have -d * n = -d * nat.succ k, by rewrite [Hn', Hk],
|
||
have H3 : inv (mk -[1+k] d dp) ≡ mk (-d) n np, from this,
|
||
have H4 : -[1+k] = -n, from calc
|
||
-[1+k] = -(nat.succ k) : rfl
|
||
... = -n : by rewrite [Hk⁻¹, Hn'],
|
||
H4 ▸ H3
|
||
|
||
theorem inv_of_neg {n d : int} (nn : n < 0) (dp : d > 0) :
|
||
inv (mk n d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn) :=
|
||
have inv (mk (-(-n)) d dp) ≡ mk (-d) (-n) (neg_pos_of_neg nn),
|
||
from inv_neg (neg_pos_of_neg nn) dp,
|
||
!neg_neg ▸ this
|
||
|
||
/- operations respect equiv -/
|
||
|
||
theorem add_equiv_add {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) :
|
||
add a1 b1 ≡ add a2 b2 :=
|
||
calc
|
||
(num a1 * denom b1 + num b1 * denom a1) * (denom a2 * denom b2)
|
||
= num a1 * denom a2 * denom b1 * denom b2 + num b1 * denom b2 * denom a1 * denom a2 :
|
||
by rewrite [right_distrib, *mul.assoc, mul.left_comm (denom b1),
|
||
mul.comm (denom b2), *mul.assoc]
|
||
... = num a2 * denom a1 * denom b1 * denom b2 + num b2 * denom b1 * denom a1 * denom a2 :
|
||
by rewrite [↑equiv at *, eqv1, eqv2]
|
||
... = (num a2 * denom b2 + num b2 * denom a2) * (denom a1 * denom b1) :
|
||
by rewrite [right_distrib, *mul.assoc, *mul.left_comm (denom b2),
|
||
*mul.comm (denom b1), *mul.assoc, mul.left_comm (denom a2)]
|
||
|
||
theorem mul_equiv_mul {a1 b1 a2 b2 : prerat} (eqv1 : a1 ≡ a2) (eqv2 : b1 ≡ b2) :
|
||
mul a1 b1 ≡ mul a2 b2 :=
|
||
calc
|
||
(num a1 * num b1) * (denom a2 * denom b2)
|
||
= (num a1 * denom a2) * (num b1 * denom b2) : by rewrite [*mul.assoc, mul.left_comm (num b1)]
|
||
... = (num a2 * denom a1) * (num b2 * denom b1) : by rewrite [↑equiv at *, eqv1, eqv2]
|
||
... = (num a2 * num b2) * (denom a1 * denom b1) : by rewrite [*mul.assoc, mul.left_comm (num b2)]
|
||
|
||
theorem neg_equiv_neg {a b : prerat} (eqv : a ≡ b) : neg a ≡ neg b :=
|
||
calc
|
||
-num a * denom b = -(num a * denom b) : neg_mul_eq_neg_mul
|
||
... = -(num b * denom a) : {eqv}
|
||
... = -num b * denom a : neg_mul_eq_neg_mul
|
||
|
||
theorem inv_equiv_inv : ∀{a b : prerat}, a ≡ b → inv a ≡ inv b
|
||
| (mk an ad adp) (mk bn bd bdp) :=
|
||
assume H,
|
||
lt.by_cases
|
||
(assume an_neg : an < 0,
|
||
have bn_neg : bn < 0, from num_neg_of_equiv H an_neg,
|
||
calc
|
||
inv (mk an ad adp) ≡ mk (-ad) (-an) (neg_pos_of_neg an_neg) : inv_of_neg an_neg adp
|
||
... ≡ mk (-bd) (-bn) (neg_pos_of_neg bn_neg) :
|
||
by rewrite [↑equiv at *, ▸*, *neg_mul_neg, mul.comm ad, mul.comm bd, H]
|
||
... ≡ inv (mk bn bd bdp) : (inv_of_neg bn_neg bdp)⁻¹)
|
||
(assume an_zero : an = 0,
|
||
have bn_zero : bn = 0, from num_eq_zero_of_equiv H an_zero,
|
||
eq.subst (calc
|
||
inv (mk an ad adp) = inv (mk 0 ad adp) : {an_zero}
|
||
... = zero : inv_zero adp
|
||
... = inv (mk 0 bd bdp) : inv_zero bdp
|
||
... = inv (mk bn bd bdp) : bn_zero) !equiv.refl)
|
||
(assume an_pos : an > 0,
|
||
have bn_pos : bn > 0, from num_pos_of_equiv H an_pos,
|
||
calc
|
||
inv (mk an ad adp) ≡ mk ad an an_pos : inv_of_pos an_pos adp
|
||
... ≡ mk bd bn bn_pos :
|
||
by rewrite [↑equiv at *, ▸*, mul.comm ad, mul.comm bd, H]
|
||
... ≡ inv (mk bn bd bdp) : (inv_of_pos bn_pos bdp)⁻¹)
|
||
|
||
theorem smul_equiv {a : ℤ} {b : prerat} (H : a > 0) : smul a b H ≡ b :=
|
||
by esimp[equiv, smul]; rewrite[mul.assoc, mul.left_comm]
|
||
|
||
/- properties -/
|
||
|
||
protected theorem add.comm (a b : prerat) : add a b ≡ add b a :=
|
||
by rewrite [↑add, ↑equiv, ▸*, add.comm, mul.comm (denom a)]
|
||
|
||
protected theorem add.assoc (a b c : prerat) : add (add a b) c ≡ add a (add b c) :=
|
||
by rewrite [↑add, ↑equiv, ▸*, *(mul.comm (num c)), *(λy, mul.comm y (denom a)), *left_distrib,
|
||
*right_distrib, *mul.assoc, *add.assoc]
|
||
|
||
protected theorem add_zero (a : prerat) : add a zero ≡ a :=
|
||
by rewrite [↑add, ↑equiv, ↑zero, ↑of_int, ▸*, *mul_one, zero_mul, add_zero]
|
||
|
||
protected theorem add_left_inv (a : prerat) : add (neg a) a ≡ zero :=
|
||
by rewrite [↑add, ↑equiv, ↑neg, ↑zero, ↑of_int, ▸*, -neg_mul_eq_neg_mul, add.left_inv, *zero_mul]
|
||
|
||
protected theorem mul_comm (a b : prerat) : mul a b ≡ mul b a :=
|
||
by rewrite [↑mul, ↑equiv, mul.comm (num a), mul.comm (denom a)]
|
||
|
||
protected theorem mul_assoc (a b c : prerat) : mul (mul a b) c ≡ mul a (mul b c) :=
|
||
by rewrite [↑mul, ↑equiv, *mul.assoc]
|
||
|
||
protected theorem mul_one (a : prerat) : mul a one ≡ a :=
|
||
by rewrite [↑mul, ↑one, ↑of_int, ↑equiv, ▸*, *mul_one]
|
||
|
||
protected theorem mul_left_distrib (a b c : prerat) : mul a (add b c) ≡ add (mul a b) (mul a c) :=
|
||
have H : smul (denom a) (mul a (add b c)) (denom_pos a) =
|
||
add (mul a b) (mul a c), from begin
|
||
rewrite[↑smul, ↑mul, ↑add],
|
||
congruence,
|
||
rewrite[*left_distrib, *right_distrib, -+(int.mul_assoc)],
|
||
have T : ∀ {x y z w : ℤ}, x*y*z*w=y*z*x*w, from
|
||
λx y z w, (!int.mul_assoc ⬝ !int.mul_comm) ▸ rfl,
|
||
exact !congr_arg2 T T,
|
||
rewrite [mul.left_comm (denom a) (denom b) (denom c)],
|
||
rewrite int.mul_assoc
|
||
end,
|
||
equiv.symm (H ▸ smul_equiv (denom_pos a))
|
||
|
||
theorem mul_inv_cancel : ∀{a : prerat}, ¬ a ≡ zero → mul a (inv a) ≡ one
|
||
| (mk an ad adp) :=
|
||
assume H,
|
||
let a := mk an ad adp in
|
||
lt.by_cases
|
||
(assume an_neg : an < 0,
|
||
let ia := mk (-ad) (-an) (neg_pos_of_neg an_neg) in
|
||
calc
|
||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_neg an_neg adp)
|
||
... ≡ one : begin
|
||
esimp [equiv, num, denom, one, mul, of_int],
|
||
rewrite [*int.mul_one, *int.one_mul, mul.comm,
|
||
neg_mul_comm]
|
||
end)
|
||
(assume an_zero : an = 0, absurd (equiv_zero_of_num_eq_zero an_zero) H)
|
||
(assume an_pos : an > 0,
|
||
let ia := mk ad an an_pos in
|
||
calc
|
||
mul a (inv a) ≡ mul a ia : mul_equiv_mul !equiv.refl (inv_of_pos an_pos adp)
|
||
... ≡ one : begin
|
||
esimp [equiv, num, denom, one, mul, of_int],
|
||
rewrite [*int.mul_one, *int.one_mul, mul.comm]
|
||
end)
|
||
|
||
theorem zero_not_equiv_one : ¬ zero ≡ one :=
|
||
begin
|
||
esimp [equiv, zero, one, of_int],
|
||
rewrite [zero_mul, int.mul_one],
|
||
exact zero_ne_one
|
||
end
|
||
|
||
theorem mul_denom_equiv (a : prerat) : mul a (of_int (denom a)) ≡ of_int (num a) :=
|
||
by esimp [mul, of_int, equiv]; rewrite [*int.mul_one]
|
||
|
||
/- Reducing a fraction to lowest terms. Needed to choose a canonical representative of rat, and
|
||
define numerator and denominator. -/
|
||
|
||
definition reduce : prerat → prerat
|
||
| (mk an ad adpos) :=
|
||
have pos : ad / gcd an ad > 0, from div_pos_of_pos_of_dvd adpos !gcd_nonneg !gcd_dvd_right,
|
||
if an = 0 then prerat.zero
|
||
else mk (an / gcd an ad) (ad / gcd an ad) pos
|
||
|
||
protected theorem eq {a b : prerat} (Hn : num a = num b) (Hd : denom a = denom b) : a = b :=
|
||
begin
|
||
cases a with [an, ad, adpos],
|
||
cases b with [bn, bd, bdpos],
|
||
generalize adpos, generalize bdpos,
|
||
esimp at *,
|
||
rewrite [Hn, Hd],
|
||
intros, apply rfl
|
||
end
|
||
|
||
theorem reduce_equiv : ∀ a : prerat, reduce a ≡ a
|
||
| (mk an ad adpos) :=
|
||
decidable.by_cases
|
||
(assume anz : an = 0,
|
||
begin rewrite [↑reduce, if_pos anz, ↑equiv, anz], krewrite zero_mul end)
|
||
(assume annz : an ≠ 0,
|
||
by rewrite [↑reduce, if_neg annz, ↑equiv, mul.comm, -!int.mul_div_assoc
|
||
!gcd_dvd_left, -!int.mul_div_assoc !gcd_dvd_right, mul.comm])
|
||
|
||
theorem reduce_eq_reduce : ∀ {a b : prerat}, a ≡ b → reduce a = reduce b
|
||
| (mk an ad adpos) (mk bn bd bdpos) :=
|
||
assume H : an * bd = bn * ad,
|
||
decidable.by_cases
|
||
(assume anz : an = 0,
|
||
have H' : bn * ad = 0, by rewrite [-H, anz, zero_mul],
|
||
assert bnz : bn = 0,
|
||
from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H') (ne_of_gt adpos),
|
||
by rewrite [↑reduce, if_pos anz, if_pos bnz])
|
||
(assume annz : an ≠ 0,
|
||
assert bnnz : bn ≠ 0, from
|
||
assume bnz,
|
||
have H' : an * bd = 0, by rewrite [H, bnz, zero_mul],
|
||
have anz : an = 0,
|
||
from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H') (ne_of_gt bdpos),
|
||
show false, from annz anz,
|
||
begin
|
||
rewrite [↑reduce, if_neg annz, if_neg bnnz],
|
||
apply prerat.eq,
|
||
{apply div_gcd_eq_div_gcd H adpos bdpos},
|
||
{esimp, rewrite [gcd.comm, gcd.comm bn],
|
||
apply div_gcd_eq_div_gcd_of_nonneg,
|
||
rewrite [mul.comm, -H, mul.comm],
|
||
apply annz,
|
||
apply bnnz,
|
||
apply le_of_lt adpos,
|
||
apply le_of_lt bdpos},
|
||
end)
|
||
|
||
end prerat
|
||
|
||
/-
|
||
the rationals
|
||
-/
|
||
|
||
definition rat : Type.{1} := quot prerat.setoid
|
||
notation `ℚ` := rat
|
||
|
||
local attribute prerat.setoid [instance]
|
||
|
||
namespace rat
|
||
|
||
/- operations -/
|
||
|
||
definition of_int [coercion] (i : ℤ) : ℚ := ⟦prerat.of_int i⟧
|
||
definition of_nat [coercion] (n : ℕ) : ℚ := n
|
||
definition of_num [coercion] [reducible] (n : num) : ℚ := n
|
||
|
||
protected definition prio := num.pred int.prio
|
||
|
||
definition rat_has_zero [reducible] [instance] [priority rat.prio] : has_zero rat :=
|
||
has_zero.mk (of_int 0)
|
||
|
||
definition rat_has_one [reducible] [instance] [priority rat.prio] : has_one rat :=
|
||
has_one.mk (of_int 1)
|
||
|
||
theorem of_int_zero : of_int (0:int) = (0:rat) :=
|
||
rfl
|
||
|
||
theorem of_int_one : of_int (1:int) = (1:rat) :=
|
||
rfl
|
||
|
||
protected definition add : ℚ → ℚ → ℚ :=
|
||
quot.lift₂
|
||
(λ a b : prerat, ⟦prerat.add a b⟧)
|
||
(take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.add_equiv_add H1 H2))
|
||
|
||
protected definition mul : ℚ → ℚ → ℚ :=
|
||
quot.lift₂
|
||
(λ a b : prerat, ⟦prerat.mul a b⟧)
|
||
(take a1 a2 b1 b2, assume H1 H2, quot.sound (prerat.mul_equiv_mul H1 H2))
|
||
|
||
protected definition neg : ℚ → ℚ :=
|
||
quot.lift
|
||
(λ a : prerat, ⟦prerat.neg a⟧)
|
||
(take a1 a2, assume H, quot.sound (prerat.neg_equiv_neg H))
|
||
|
||
protected definition inv : ℚ → ℚ :=
|
||
quot.lift
|
||
(λ a : prerat, ⟦prerat.inv a⟧)
|
||
(take a1 a2, assume H, quot.sound (prerat.inv_equiv_inv H))
|
||
|
||
definition reduce : ℚ → prerat :=
|
||
quot.lift
|
||
(λ a : prerat, prerat.reduce a)
|
||
@prerat.reduce_eq_reduce
|
||
|
||
definition num (a : ℚ) : ℤ := prerat.num (reduce a)
|
||
definition denom (a : ℚ) : ℤ := prerat.denom (reduce a)
|
||
|
||
theorem denom_pos (a : ℚ): denom a > 0 :=
|
||
prerat.denom_pos (reduce a)
|
||
|
||
definition rat_has_add [reducible] [instance] [priority rat.prio] : has_add rat :=
|
||
has_add.mk rat.add
|
||
|
||
definition rat_has_mul [reducible] [instance] [priority rat.prio] : has_mul rat :=
|
||
has_mul.mk rat.mul
|
||
|
||
definition rat_has_neg [reducible] [instance] [priority rat.prio] : has_neg rat :=
|
||
has_neg.mk rat.neg
|
||
|
||
definition rat_has_inv [reducible] [instance] [priority rat.prio] : has_inv rat :=
|
||
has_inv.mk rat.inv
|
||
|
||
protected definition sub [reducible] (a b : ℚ) : rat := a + (-b)
|
||
|
||
definition rat_has_sub [reducible] [instance] [priority rat.prio] : has_sub rat :=
|
||
has_sub.mk rat.sub
|
||
|
||
lemma sub.def (a b : ℚ) : a - b = a + (-b) :=
|
||
rfl
|
||
|
||
/- properties -/
|
||
|
||
theorem of_int_add (a b : ℤ) : of_int (a + b) = of_int a + of_int b :=
|
||
quot.sound (prerat.of_int_add a b)
|
||
|
||
theorem of_int_mul (a b : ℤ) : of_int (a * b) = of_int a * of_int b :=
|
||
quot.sound (prerat.of_int_mul a b)
|
||
|
||
theorem of_int_neg (a : ℤ) : of_int (-a) = -(of_int a) :=
|
||
quot.sound (prerat.of_int_neg a)
|
||
|
||
theorem of_int_sub (a b : ℤ) : of_int (a - b) = of_int a - of_int b :=
|
||
calc
|
||
of_int (a - b) = of_int a + of_int (-b) : of_int_add
|
||
... = of_int a - of_int b : {of_int_neg b}
|
||
|
||
theorem of_int.inj {a b : ℤ} (H : of_int a = of_int b) : a = b :=
|
||
prerat.of_int.inj (quot.exact H)
|
||
|
||
theorem eq_of_of_int_eq_of_int {a b : ℤ} (H : of_int a = of_int b) : a = b :=
|
||
of_int.inj H
|
||
|
||
theorem of_int_eq_of_int_iff (a b : ℤ) : of_int a = of_int b ↔ a = b :=
|
||
iff.intro eq_of_of_int_eq_of_int !congr_arg
|
||
|
||
theorem of_nat_eq (a : ℕ) : of_nat a = of_int (int.of_nat a) :=
|
||
rfl
|
||
|
||
open nat
|
||
|
||
theorem of_nat_add (a b : ℕ) : of_nat (a + b) = of_nat a + of_nat b :=
|
||
by rewrite [of_nat_eq, int.of_nat_add, rat.of_int_add]
|
||
|
||
theorem of_nat_mul (a b : ℕ) : of_nat (a * b) = of_nat a * of_nat b :=
|
||
by rewrite [of_nat_eq, int.of_nat_mul, rat.of_int_mul]
|
||
|
||
theorem of_nat_sub {a b : ℕ} (H : a ≥ b) : of_nat (a - b) = of_nat a - of_nat b :=
|
||
begin
|
||
rewrite of_nat_eq,
|
||
rewrite [int.of_nat_sub H],
|
||
rewrite [rat.of_int_sub]
|
||
end
|
||
|
||
theorem of_nat.inj {a b : ℕ} (H : of_nat a = of_nat b) : a = b :=
|
||
int.of_nat.inj (of_int.inj H)
|
||
|
||
theorem eq_of_of_nat_eq_of_nat {a b : ℕ} (H : of_nat a = of_nat b) : a = b :=
|
||
of_nat.inj H
|
||
|
||
theorem of_nat_eq_of_nat_iff (a b : ℕ) : of_nat a = of_nat b ↔ a = b :=
|
||
iff.intro of_nat.inj !congr_arg
|
||
|
||
protected theorem add_comm (a b : ℚ) : a + b = b + a :=
|
||
quot.induction_on₂ a b (take u v, quot.sound !prerat.add.comm)
|
||
|
||
protected theorem add_assoc (a b c : ℚ) : a + b + c = a + (b + c) :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.add.assoc)
|
||
|
||
protected theorem add_zero (a : ℚ) : a + 0 = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.add_zero)
|
||
|
||
protected theorem zero_add (a : ℚ) : 0 + a = a := !rat.add_comm ▸ !rat.add_zero
|
||
|
||
protected theorem add_left_inv (a : ℚ) : -a + a = 0 :=
|
||
quot.induction_on a (take u, quot.sound !prerat.add_left_inv)
|
||
|
||
protected theorem mul_comm (a b : ℚ) : a * b = b * a :=
|
||
quot.induction_on₂ a b (take u v, quot.sound !prerat.mul_comm)
|
||
|
||
protected theorem mul_assoc (a b c : ℚ) : a * b * c = a * (b * c) :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul_assoc)
|
||
|
||
protected theorem mul_one (a : ℚ) : a * 1 = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.mul_one)
|
||
|
||
protected theorem one_mul (a : ℚ) : 1 * a = a := !rat.mul_comm ▸ !rat.mul_one
|
||
|
||
protected theorem left_distrib (a b c : ℚ) : a * (b + c) = a * b + a * c :=
|
||
quot.induction_on₃ a b c (take u v w, quot.sound !prerat.mul_left_distrib)
|
||
|
||
protected theorem right_distrib (a b c : ℚ) : (a + b) * c = a * c + b * c :=
|
||
by rewrite [rat.mul_comm, rat.left_distrib, *rat.mul_comm c]
|
||
|
||
protected theorem mul_inv_cancel {a : ℚ} : a ≠ 0 → a * a⁻¹ = 1 :=
|
||
quot.induction_on a
|
||
(take u,
|
||
assume H,
|
||
quot.sound (!prerat.mul_inv_cancel (assume H1, H (quot.sound H1))))
|
||
|
||
protected theorem inv_mul_cancel {a : ℚ} (H : a ≠ 0) : a⁻¹ * a = 1 :=
|
||
!rat.mul_comm ▸ rat.mul_inv_cancel H
|
||
|
||
protected theorem zero_ne_one : (0 : ℚ) ≠ 1 :=
|
||
assume H, prerat.zero_not_equiv_one (quot.exact H)
|
||
|
||
definition has_decidable_eq [instance] : decidable_eq ℚ :=
|
||
take a b, quot.rec_on_subsingleton₂ a b
|
||
(take u v,
|
||
if H : prerat.num u * prerat.denom v = prerat.num v * prerat.denom u
|
||
then decidable.inl (quot.sound H)
|
||
else decidable.inr (assume H1, H (quot.exact H1)))
|
||
|
||
protected theorem inv_zero : inv 0 = (0 : ℚ) :=
|
||
quot.sound (prerat.inv_zero' ▸ !prerat.equiv.refl)
|
||
|
||
theorem quot_reduce (a : ℚ) : ⟦reduce a⟧ = a :=
|
||
quot.induction_on a (take u, quot.sound !prerat.reduce_equiv)
|
||
|
||
section
|
||
local attribute rat [reducible]
|
||
theorem mul_denom (a : ℚ) : a * denom a = num a :=
|
||
have H : ⟦reduce a⟧ * of_int (denom a) = of_int (num a), from quot.sound (!prerat.mul_denom_equiv),
|
||
quot_reduce a ▸ H
|
||
end
|
||
|
||
theorem coprime_num_denom (a : ℚ) : coprime (num a) (denom a) :=
|
||
decidable.by_cases
|
||
(suppose a = 0, by substvars)
|
||
(quot.induction_on a
|
||
(take u H,
|
||
assert H' : prerat.num u ≠ 0, from take H'', H (quot.sound (prerat.equiv_zero_of_num_eq_zero H'')),
|
||
begin
|
||
cases u with un ud udpos,
|
||
rewrite [▸*, ↑num, ↑denom, ↑reduce, ↑prerat.reduce, if_neg H', ▸*],
|
||
have gcd un ud ≠ 0, from ne_of_gt (!gcd_pos_of_ne_zero_left H'),
|
||
apply coprime_div_gcd_div_gcd this
|
||
end))
|
||
|
||
|
||
protected definition discrete_field [reducible] [trans_instance] : discrete_field rat :=
|
||
⦃discrete_field,
|
||
add := rat.add,
|
||
add_assoc := rat.add_assoc,
|
||
zero := 0,
|
||
zero_add := rat.zero_add,
|
||
add_zero := rat.add_zero,
|
||
neg := rat.neg,
|
||
add_left_inv := rat.add_left_inv,
|
||
add_comm := rat.add_comm,
|
||
mul := rat.mul,
|
||
mul_assoc := rat.mul_assoc,
|
||
one := 1,
|
||
one_mul := rat.one_mul,
|
||
mul_one := rat.mul_one,
|
||
left_distrib := rat.left_distrib,
|
||
right_distrib := rat.right_distrib,
|
||
mul_comm := rat.mul_comm,
|
||
mul_inv_cancel := @rat.mul_inv_cancel,
|
||
inv_mul_cancel := @rat.inv_mul_cancel,
|
||
zero_ne_one := rat.zero_ne_one,
|
||
inv_zero := rat.inv_zero,
|
||
has_decidable_eq := has_decidable_eq⦄
|
||
|
||
definition rat_has_div [instance] [reducible] [priority rat.prio] : has_div rat :=
|
||
has_div.mk has_div.div
|
||
|
||
definition rat_has_pow_nat [instance] [reducible] [priority rat.prio] : has_pow_nat rat :=
|
||
has_pow_nat.mk has_pow_nat.pow_nat
|
||
|
||
theorem eq_num_div_denom (a : ℚ) : a = num a / denom a :=
|
||
have H : of_int (denom a) ≠ 0, from assume H', ne_of_gt (denom_pos a) (of_int.inj H'),
|
||
iff.mpr (!eq_div_iff_mul_eq H) (mul_denom a)
|
||
|
||
theorem of_int_div {a b : ℤ} (H : b ∣ a) : of_int (a / b) = of_int a / of_int b :=
|
||
decidable.by_cases
|
||
(assume bz : b = 0,
|
||
by rewrite [bz, int.div_zero, of_int_zero, div_zero])
|
||
(assume bnz : b ≠ 0,
|
||
have bnz' : of_int b ≠ 0, from assume oibz, bnz (of_int.inj oibz),
|
||
have H' : of_int (a / b) * of_int b = of_int a, from
|
||
dvd.elim H
|
||
(take c, assume Hc : a = b * c,
|
||
by rewrite [Hc, !int.mul_div_cancel_left bnz, mul.comm]),
|
||
iff.mpr (!eq_div_iff_mul_eq bnz') H')
|
||
|
||
theorem of_nat_div {a b : ℕ} (H : b ∣ a) : of_nat (a / b) = of_nat a / of_nat b :=
|
||
have H' : (int.of_nat b ∣ int.of_nat a), by rewrite [int.of_nat_dvd_of_nat_iff]; exact H,
|
||
by+ rewrite [of_nat_eq, int.of_nat_div, of_int_div H']
|
||
|
||
theorem of_int_pow (a : ℤ) (n : ℕ) : of_int (a^n) = (of_int a)^n :=
|
||
begin
|
||
induction n with n ih,
|
||
apply eq.refl,
|
||
rewrite [pow_succ, pow_succ, of_int_mul, ih]
|
||
end
|
||
|
||
theorem of_nat_pow (a : ℕ) (n : ℕ) : of_nat (a^n) = (of_nat a)^n :=
|
||
by rewrite [of_nat_eq, int.of_nat_pow, of_int_pow]
|
||
|
||
end rat
|