505 lines
18 KiB
Text
505 lines
18 KiB
Text
/-
|
||
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Jeremy Avigad
|
||
|
||
Metric spaces.
|
||
-/
|
||
import data.real.complete data.pnat data.list.sort
|
||
open nat real eq.ops classical
|
||
|
||
structure metric_space [class] (M : Type) : Type :=
|
||
(dist : M → M → ℝ)
|
||
(dist_self : ∀ x : M, dist x x = 0)
|
||
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
|
||
(dist_comm : ∀ x y : M, dist x y = dist y x)
|
||
(dist_triangle : ∀ x y z : M, dist x z ≤ dist x y + dist y z)
|
||
|
||
namespace analysis
|
||
|
||
section metric_space_M
|
||
variables {M : Type} [metric_space M]
|
||
|
||
definition dist (x y : M) : ℝ := metric_space.dist x y
|
||
|
||
proposition dist_self (x : M) : dist x x = 0 := metric_space.dist_self x
|
||
|
||
proposition eq_of_dist_eq_zero {x y : M} (H : dist x y = 0) : x = y :=
|
||
metric_space.eq_of_dist_eq_zero H
|
||
|
||
proposition dist_comm (x y : M) : dist x y = dist y x := metric_space.dist_comm x y
|
||
|
||
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
|
||
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
|
||
|
||
proposition dist_triangle (x y z : M) : dist x z ≤ dist x y + dist y z :=
|
||
metric_space.dist_triangle x y z
|
||
|
||
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
|
||
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
|
||
have 2 * dist x y ≥ 0, using this,
|
||
by krewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
|
||
nonneg_of_mul_nonneg_left this two_pos
|
||
|
||
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
|
||
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
|
||
|
||
proposition ne_of_dist_pos {x y : M} (H : dist x y > 0) : x ≠ y :=
|
||
suppose x = y,
|
||
have H1 [visible] : dist x x > 0, by rewrite this at {2}; exact H,
|
||
by rewrite dist_self at H1; apply not_lt_self _ H1
|
||
|
||
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
|
||
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
|
||
|
||
/- convergence of a sequence -/
|
||
|
||
definition converges_to_seq (X : ℕ → M) (y : M) : Prop :=
|
||
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ ⦃n⦄, n ≥ N → dist (X n) y < ε
|
||
|
||
-- the same, with ≤ in place of <; easier to prove, harder to use
|
||
definition converges_to_seq.intro {X : ℕ → M} {y : M}
|
||
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
|
||
converges_to_seq X y :=
|
||
take ε, assume epos : ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N HN, from H e2pos,
|
||
exists.intro N
|
||
(take n, suppose n ≥ N,
|
||
calc
|
||
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
|
||
... < ε : div_two_lt_of_pos epos)
|
||
|
||
notation X `⟶` y `in` `ℕ` := converges_to_seq X y
|
||
|
||
definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ
|
||
|
||
noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H
|
||
|
||
proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] :
|
||
(X ⟶ limit_seq X in ℕ) :=
|
||
some_spec H
|
||
|
||
proposition converges_to_seq_unique {X : ℕ → M} {y₁ y₂ : M}
|
||
(H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ :=
|
||
eq_of_forall_dist_le
|
||
(take ε, suppose ε > 0,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos,
|
||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos,
|
||
let N := max N₁ N₂ in
|
||
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
|
||
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
|
||
have dist y₁ y₂ < ε, from calc
|
||
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
|
||
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
|
||
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
||
... = ε : add_halves,
|
||
show dist y₁ y₂ ≤ ε, from le_of_lt this)
|
||
|
||
proposition eq_limit_of_converges_to_seq {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) :
|
||
y = @limit_seq M _ X (exists.intro y H) :=
|
||
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
|
||
|
||
proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ :=
|
||
take ε, assume egt0 : ε > 0,
|
||
exists.intro 0
|
||
(take n, suppose n ≥ 0,
|
||
calc
|
||
dist y y = 0 : !dist_self
|
||
... < ε : egt0)
|
||
|
||
proposition converges_to_seq_offset {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||
(λ n, X (n + k)) ⟶ y in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
obtain N HN, from H `ε > 0`,
|
||
exists.intro N
|
||
(take n : ℕ, assume ngtN : n ≥ N,
|
||
show dist (X (n + k)) y < ε, from HN (n + k) (le.trans ngtN !le_add_right))
|
||
|
||
proposition converges_to_seq_offset_left {X : ℕ → M} {y : M} (k : ℕ) (H : X ⟶ y in ℕ) :
|
||
(λ n, X (k + n)) ⟶ y in ℕ :=
|
||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||
by+ rewrite aux; exact converges_to_seq_offset k H
|
||
|
||
proposition converges_to_seq_offset_succ {X : ℕ → M} {y : M} (H : X ⟶ y in ℕ) :
|
||
(λ n, X (succ n)) ⟶ y in ℕ :=
|
||
converges_to_seq_offset 1 H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset
|
||
{X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (n + k)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
take ε, suppose ε > 0,
|
||
obtain N HN, from H `ε > 0`,
|
||
exists.intro (N + k)
|
||
(take n : ℕ, assume nge : n ≥ N + k,
|
||
have n - k ≥ N, from nat.le_sub_of_add_le nge,
|
||
have dist (X (n - k + k)) y < ε, from HN (n - k) this,
|
||
show dist (X n) y < ε, using this,
|
||
by rewrite [(nat.sub_add_cancel (le.trans !le_add_left nge)) at this]; exact this)
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset_left
|
||
{X : ℕ → M} {y : M} {k : ℕ} (H : (λ n, X (k + n)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
have aux : (λ n, X (k + n)) = (λ n, X (n + k)), from funext (take n, by rewrite add.comm),
|
||
by+ rewrite aux at H; exact converges_to_seq_of_converges_to_seq_offset H
|
||
|
||
proposition converges_to_seq_of_converges_to_seq_offset_succ
|
||
{X : ℕ → M} {y : M} (H : (λ n, X (succ n)) ⟶ y in ℕ) :
|
||
X ⟶ y in ℕ :=
|
||
@converges_to_seq_of_converges_to_seq_offset M _ X y 1 H
|
||
|
||
proposition converges_to_seq_offset_iff (X : ℕ → M) (y : M) (k : ℕ) :
|
||
((λ n, X (n + k)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
iff.intro converges_to_seq_of_converges_to_seq_offset !converges_to_seq_offset
|
||
|
||
proposition converges_to_seq_offset_left_iff (X : ℕ → M) (y : M) (k : ℕ) :
|
||
((λ n, X (k + n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
iff.intro converges_to_seq_of_converges_to_seq_offset_left !converges_to_seq_offset_left
|
||
|
||
proposition converges_to_seq_offset_succ_iff (X : ℕ → M) (y : M) :
|
||
((λ n, X (succ n)) ⟶ y in ℕ) ↔ (X ⟶ y in ℕ) :=
|
||
iff.intro converges_to_seq_of_converges_to_seq_offset_succ !converges_to_seq_offset_succ
|
||
|
||
section
|
||
open list
|
||
definition r_trans : transitive (@le ℝ _) := λ a b c, !le.trans
|
||
definition r_refl : reflexive (@le ℝ _) := λ a, !le.refl
|
||
|
||
theorem dec_prf_eq (P : Prop) (H1 H2 : decidable P) : H1 = H2 :=
|
||
begin
|
||
induction H1,
|
||
induction H2,
|
||
reflexivity,
|
||
apply absurd a a_1,
|
||
induction H2,
|
||
apply absurd a_1 a,
|
||
reflexivity
|
||
end
|
||
|
||
-- there's a very ugly part of this proof.
|
||
|
||
proposition bounded_of_converges_seq {X : ℕ → M} {x : M} (H : X ⟶ x in ℕ) :
|
||
∃ K : ℝ, ∀ n : ℕ, dist (X n) x ≤ K :=
|
||
begin
|
||
cases H zero_lt_one with N HN,
|
||
cases em (N = 0),
|
||
existsi 1,
|
||
intro n,
|
||
apply le_of_lt,
|
||
apply HN,
|
||
rewrite a,
|
||
apply zero_le,
|
||
let l := map (λ n : ℕ, -dist (X n) x) (upto N),
|
||
have Hnenil : l ≠ nil, from (map_ne_nil_of_ne_nil _ (upto_ne_nil_of_ne_zero a)),
|
||
existsi max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1,
|
||
intro n,
|
||
have Hsmn : ∀ m : ℕ, m < N → dist (X m) x ≤ max (-list.min (λ a b : ℝ, le a b) l Hnenil) 1, begin
|
||
intro m Hm,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply le_max_left,
|
||
note Hall := min_lemma real.le_total r_trans r_refl Hnenil,
|
||
have Hmem : -dist (X m) x ∈ (map (λ (n : ℕ), -dist (X n) x) (upto N)), from mem_map _ (mem_upto_of_lt Hm),
|
||
note Hallm' := of_mem_of_all Hmem Hall,
|
||
apply le_neg_of_le_neg,
|
||
esimp, esimp at Hallm',
|
||
have Heqs : (λ (a b : real), classical.prop_decidable (@le.{1} real real.real_has_le a b))
|
||
=
|
||
(@decidable_le.{1} real
|
||
(@decidable_linear_ordered_comm_group.to_decidable_linear_order.{1} real
|
||
(@decidable_linear_ordered_comm_ring.to_decidable_linear_ordered_comm_group.{1} real
|
||
(@discrete_linear_ordered_field.to_decidable_linear_ordered_comm_ring.{1} real
|
||
real.discrete_linear_ordered_field)))),
|
||
begin
|
||
apply funext, intro, apply funext, intro,
|
||
apply dec_prf_eq
|
||
end,
|
||
rewrite -Heqs,
|
||
exact Hallm'
|
||
end,
|
||
cases em (n < N) with Elt Ege,
|
||
apply Hsmn,
|
||
exact Elt,
|
||
apply le_of_lt,
|
||
apply lt_of_lt_of_le,
|
||
apply HN,
|
||
apply le_of_not_gt Ege,
|
||
apply le_max_right
|
||
end
|
||
end
|
||
|
||
/- cauchy sequences -/
|
||
|
||
definition cauchy (X : ℕ → M) : Prop :=
|
||
∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
|
||
|
||
proposition cauchy_of_converges_seq (X : ℕ → M) [H : converges_seq X] : cauchy X :=
|
||
take ε, suppose ε > 0,
|
||
obtain y (Hy : converges_to_seq X y), from H,
|
||
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
||
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos,
|
||
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos,
|
||
let N := max N₁ N₂ in
|
||
exists.intro N
|
||
(take m n, suppose m ≥ N, suppose n ≥ N,
|
||
have m ≥ N₁, from le.trans !le_max_left `m ≥ N`,
|
||
have n ≥ N₂, from le.trans !le_max_right `n ≥ N`,
|
||
have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`,
|
||
have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`,
|
||
show dist (X m) (X n) < ε, from calc
|
||
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
|
||
... = dist (X m) y + dist (X n) y : dist_comm
|
||
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
||
... = ε : add_halves)
|
||
|
||
end metric_space_M
|
||
|
||
/- convergence of a function at a point -/
|
||
|
||
section metric_space_M_N
|
||
variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N]
|
||
include strucM strucN
|
||
|
||
definition converges_to_at (f : M → N) (y : N) (x : M) :=
|
||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, x' ≠ x ∧ dist x' x < δ → dist (f x') y < ε
|
||
|
||
notation f `⟶` y `at` x := converges_to_at f y x
|
||
|
||
definition converges_at [class] (f : M → N) (x : M) :=
|
||
∃ y, converges_to_at f y x
|
||
|
||
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
|
||
some H
|
||
|
||
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
|
||
(f ⟶ limit_at f x at x) :=
|
||
some_spec H
|
||
|
||
/- continuity at a point -/
|
||
|
||
definition continuous_at (f : M → N) (x : M) :=
|
||
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ ⦃x'⦄, dist x' x < δ → dist (f x') (f x) < ε
|
||
|
||
theorem continuous_at_of_converges_to_at {f : M → N} {x : M} (Hf : f ⟶ f x at x) :
|
||
continuous_at f x :=
|
||
take ε, suppose ε > 0,
|
||
obtain δ Hδ, from Hf this,
|
||
exists.intro δ (and.intro
|
||
(and.left Hδ)
|
||
(take x', suppose dist x' x < δ,
|
||
if Heq : x' = x then
|
||
by rewrite [-Heq, dist_self]; assumption
|
||
else
|
||
(suffices dist x' x < δ, from and.right Hδ x' (and.intro Heq this),
|
||
this)))
|
||
|
||
theorem converges_to_at_of_continuous_at {f : M → N} {x : M} (Hf : continuous_at f x) :
|
||
f ⟶ f x at x :=
|
||
take ε, suppose ε > 0,
|
||
obtain δ Hδ, from Hf this,
|
||
exists.intro δ (and.intro
|
||
(and.left Hδ)
|
||
(take x',
|
||
assume H : x' ≠ x ∧ dist x' x < δ,
|
||
show dist (f x') (f x) < ε, from and.right Hδ x' (and.right H)))
|
||
|
||
section
|
||
omit strucN
|
||
set_option pp.coercions true
|
||
--set_option pp.all true
|
||
|
||
open pnat rat
|
||
|
||
section
|
||
omit strucM
|
||
|
||
private lemma of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat (p : pnat) :
|
||
of_rat (rat_of_pnat p) = of_nat (nat_of_pnat p) :=
|
||
rfl
|
||
|
||
end
|
||
|
||
theorem cnv_real_of_cnv_nat {X : ℕ → M} {c : M} (H : ∀ n : ℕ, dist (X n) c < 1 / (real.of_nat n + 1)) :
|
||
∀ ε : ℝ, ε > 0 → ∃ N : ℕ, ∀ n : ℕ, n ≥ N → dist (X n) c < ε :=
|
||
begin
|
||
intros ε Hε,
|
||
cases ex_rat_pos_lower_bound_of_pos Hε with q Hq,
|
||
cases Hq with Hq1 Hq2,
|
||
cases pnat_bound Hq1 with p Hp,
|
||
existsi nat_of_pnat p,
|
||
intros n Hn,
|
||
apply lt_of_lt_of_le,
|
||
apply H,
|
||
apply le.trans,
|
||
rotate 1,
|
||
apply Hq2,
|
||
have Hrat : of_rat (inv p) ≤ of_rat q, from of_rat_le_of_rat_of_le Hp,
|
||
apply le.trans,
|
||
rotate 1,
|
||
exact Hrat,
|
||
change 1 / (of_nat n + 1) ≤ of_rat ((1 : ℚ) / (rat_of_pnat p)),
|
||
rewrite [of_rat_divide, of_rat_one],
|
||
eapply one_div_le_one_div_of_le,
|
||
krewrite -of_rat_zero,
|
||
apply of_rat_lt_of_rat_of_lt,
|
||
apply rat_of_pnat_is_pos,
|
||
krewrite [of_rat_rat_of_pnat_eq_of_nat_nat_of_pnat, -real.of_nat_add],
|
||
apply real.of_nat_le_of_nat_of_le,
|
||
apply le_add_of_le_right,
|
||
assumption
|
||
end
|
||
end
|
||
|
||
theorem all_conv_seqs_of_converges_to_at {f : M → N} {c : M} {l : N} (Hconv : f ⟶ l at c) :
|
||
∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ)) :=
|
||
begin
|
||
intros X HX,
|
||
rewrite [↑converges_to_at at Hconv, ↑converges_to_seq],
|
||
intros ε Hε,
|
||
cases Hconv Hε with δ Hδ,
|
||
cases Hδ with Hδ1 Hδ2,
|
||
cases HX 0 with _ HXlim,
|
||
cases HXlim Hδ1 with N1 HN1,
|
||
existsi N1,
|
||
intro n Hn,
|
||
apply Hδ2,
|
||
split,
|
||
apply and.left (HX _),
|
||
exact HN1 Hn
|
||
end
|
||
|
||
theorem converges_to_at_of_all_conv_seqs {f : M → N} (c : M) (l : N)
|
||
(Hseq : ∀ X : ℕ → M, ((∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ)) → ((λ n : ℕ, f (X n)) ⟶ l in ℕ)))
|
||
: f ⟶ l at c :=
|
||
by_contradiction
|
||
(assume Hnot : ¬ (f ⟶ l at c),
|
||
obtain ε Hε, from exists_not_of_not_forall Hnot,
|
||
let Hε' := iff.mp not_implies_iff_and_not Hε in
|
||
obtain (H1 : ε > 0) H2, from Hε',
|
||
have H3 [visible] : ∀ δ : ℝ, (δ > 0 → ∃ x' : M, x' ≠ c ∧ dist x' c < δ ∧ dist (f x') l ≥ ε), begin -- tedious!!
|
||
intros δ Hδ,
|
||
note Hε'' := forall_not_of_not_exists H2,
|
||
note H4 := forall_not_of_not_exists H2 δ,
|
||
have ¬ (∀ x' : M, x' ≠ c ∧ dist x' c < δ → dist (f x') l < ε), from λ H', H4 (and.intro Hδ H'),
|
||
note H5 := exists_not_of_not_forall this,
|
||
cases H5 with x' Hx',
|
||
existsi x',
|
||
note H6 := iff.mp not_implies_iff_and_not Hx',
|
||
rewrite and.assoc at H6,
|
||
cases H6,
|
||
split,
|
||
assumption,
|
||
cases a_1,
|
||
split,
|
||
assumption,
|
||
apply le_of_not_gt,
|
||
assumption
|
||
end,
|
||
let S : ℕ → M → Prop := λ n x, 0 < dist x c ∧ dist x c < 1 / (of_nat n + 1) ∧ dist (f x) l ≥ ε in
|
||
have HS [visible] : ∀ n : ℕ, ∃ m : M, S n m, begin
|
||
intro k,
|
||
have Hpos : 0 < of_nat k + 1, from of_nat_succ_pos k,
|
||
cases H3 (1 / (k + 1)) (one_div_pos_of_pos Hpos) with x' Hx',
|
||
cases Hx' with Hne Hx',
|
||
cases Hx' with Hdistl Hdistg,
|
||
existsi x',
|
||
esimp,
|
||
split,
|
||
apply dist_pos_of_ne,
|
||
assumption,
|
||
split,
|
||
repeat assumption
|
||
end,
|
||
let X : ℕ → M := λ n, some (HS n) in
|
||
have H4 [visible] : ∀ n : ℕ, ((X n) ≠ c) ∧ (X ⟶ c in ℕ), from
|
||
(take n, and.intro
|
||
(begin
|
||
note Hspec := some_spec (HS n),
|
||
esimp, esimp at Hspec,
|
||
cases Hspec,
|
||
apply ne_of_dist_pos,
|
||
assumption
|
||
end)
|
||
(begin
|
||
apply cnv_real_of_cnv_nat,
|
||
intro m,
|
||
note Hspec := some_spec (HS m),
|
||
esimp, esimp at Hspec,
|
||
cases Hspec with Hspec1 Hspec2,
|
||
cases Hspec2,
|
||
assumption
|
||
end)),
|
||
have H5 [visible] : (λ n : ℕ, f (X n)) ⟶ l in ℕ, from Hseq X H4,
|
||
begin
|
||
note H6 := H5 H1,
|
||
cases H6 with Q HQ,
|
||
note HQ' := HQ !le.refl,
|
||
esimp at HQ',
|
||
apply absurd HQ',
|
||
apply not_lt_of_ge,
|
||
note H7 := some_spec (HS Q),
|
||
esimp at H7,
|
||
cases H7 with H71 H72,
|
||
cases H72,
|
||
assumption
|
||
end)
|
||
|
||
definition continuous (f : M → N) : Prop := ∀ x, continuous_at f x
|
||
|
||
theorem converges_seq_comp_of_converges_seq_of_cts [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N}
|
||
(Hf : continuous f) :
|
||
converges_seq (λ n, f (X n)) :=
|
||
begin
|
||
cases HX with xlim Hxlim,
|
||
existsi f xlim,
|
||
rewrite ↑converges_to_seq at *,
|
||
intros ε Hε,
|
||
let Hcont := Hf xlim Hε,
|
||
cases Hcont with δ Hδ,
|
||
cases Hxlim (and.left Hδ) with B HB,
|
||
existsi B,
|
||
intro n Hn,
|
||
apply and.right Hδ,
|
||
apply HB Hn
|
||
end
|
||
|
||
omit strucN
|
||
|
||
theorem id_continuous : continuous (λ x : M, x) :=
|
||
begin
|
||
intros x ε Hε,
|
||
existsi ε,
|
||
split,
|
||
assumption,
|
||
intros,
|
||
assumption
|
||
end
|
||
|
||
end metric_space_M_N
|
||
|
||
end analysis
|
||
|
||
/- complete metric spaces -/
|
||
|
||
structure complete_metric_space [class] (M : Type) extends metricM : metric_space M : Type :=
|
||
(complete : ∀ X, @analysis.cauchy M metricM X → @analysis.converges_seq M metricM X)
|
||
|
||
namespace analysis
|
||
|
||
proposition complete (M : Type) [cmM : complete_metric_space M] {X : ℕ → M} (H : cauchy X) :
|
||
converges_seq X :=
|
||
complete_metric_space.complete X H
|
||
|
||
end analysis
|
||
|
||
/- the reals form a metric space -/
|
||
|
||
noncomputable definition metric_space_real [instance] : metric_space ℝ :=
|
||
⦃ metric_space,
|
||
dist := λ x y, abs (x - y),
|
||
dist_self := λ x, abstract by rewrite [sub_self, abs_zero] end,
|
||
eq_of_dist_eq_zero := λ x y, eq_of_abs_sub_eq_zero,
|
||
dist_comm := abs_sub,
|
||
dist_triangle := abs_sub_le
|
||
⦄
|