98 lines
4 KiB
Text
98 lines
4 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: types.equiv
|
||
Author: Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
Theorems about the types equiv and is_equiv
|
||
-/
|
||
|
||
import types.fiber types.arrow
|
||
|
||
open eq is_trunc sigma sigma.ops arrow pi
|
||
|
||
namespace is_equiv
|
||
open equiv function
|
||
section
|
||
open fiber
|
||
variables {A B : Type} (f : A → B) [H : is_equiv f]
|
||
include H
|
||
definition is_contr_fiber_of_is_equiv (b : B) : is_contr (fiber f b) :=
|
||
is_contr.mk
|
||
(fiber.mk (f⁻¹ b) (retr f b))
|
||
(λz, fiber.rec_on z (λa p, fiber.eq_mk ((ap f⁻¹ p)⁻¹ ⬝ sect f a) (calc
|
||
retr f b = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ((ap (f ∘ f⁻¹) p) ⬝ retr f b) : by rewrite inv_con_cancel_left
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (retr f (f a) ⬝ p) : by rewrite ap_con_eq_con
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ (ap f (sect f a) ⬝ p) : by rewrite adj
|
||
... = (ap (f ∘ f⁻¹) p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite con.assoc
|
||
... = (ap f (ap f⁻¹ p))⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_compose
|
||
... = ap f (ap f⁻¹ p)⁻¹ ⬝ ap f (sect f a) ⬝ p : by rewrite ap_inv
|
||
... = ap f ((ap f⁻¹ p)⁻¹ ⬝ sect f a) ⬝ p : by rewrite ap_con)))
|
||
|
||
definition is_contr_right_inverse : is_contr (Σ(g : B → A), f ∘ g ∼ id) :=
|
||
begin
|
||
fapply is_trunc_equiv_closed,
|
||
{apply sigma_equiv_sigma_id, intro g, apply eq_equiv_homotopy},
|
||
fapply is_trunc_equiv_closed,
|
||
{apply fiber.sigma_char},
|
||
fapply is_contr_fiber_of_is_equiv,
|
||
apply (to_is_equiv (arrow_equiv_arrow_right (equiv.mk f H))),
|
||
end
|
||
|
||
definition is_contr_right_coherence (u : Σ(g : B → A), f ∘ g ∼ id)
|
||
: is_contr (Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
||
begin
|
||
fapply is_trunc_equiv_closed,
|
||
{apply equiv.symm, apply sigma_pi_equiv_pi_sigma},
|
||
fapply is_trunc_equiv_closed,
|
||
{apply pi_equiv_pi_id, intro a,
|
||
apply (equiv_fiber_eq (fiber.mk (u.1 (f a)) (u.2 (f a))) (fiber.mk a idp))},
|
||
fapply is_trunc_pi,
|
||
intro a, fapply @is_contr_eq,
|
||
apply is_contr_fiber_of_is_equiv
|
||
end
|
||
|
||
end
|
||
variables {A B : Type} (f : A → B)
|
||
|
||
protected definition sigma_char : (is_equiv f) ≃
|
||
(Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a)) :=
|
||
equiv.MK (λH, ⟨inv f, retr f, sect f, adj f⟩)
|
||
(λp, is_equiv.mk p.1 p.2.1 p.2.2.1 p.2.2.2)
|
||
(λp, begin
|
||
cases p with (p1, p2),
|
||
cases p2 with (p21, p22),
|
||
cases p22 with (p221, p222),
|
||
apply idp
|
||
end)
|
||
(λH, is_equiv.rec_on H (λH1 H2 H3 H4, idp))
|
||
|
||
protected definition sigma_char' : (is_equiv f) ≃
|
||
(Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a)) :=
|
||
calc
|
||
(is_equiv f) ≃
|
||
(Σ(g : B → A) (ε : f ∘ g ∼ id) (η : g ∘ f ∼ id), Π(a : A), ε (f a) = ap f (η a))
|
||
: is_equiv.sigma_char
|
||
... ≃ (Σ(u : Σ(g : B → A), f ∘ g ∼ id), Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a))
|
||
: {sigma_assoc_equiv (λu, Σ(η : u.1 ∘ f ∼ id), Π(a : A), u.2 (f a) = ap f (η a))}
|
||
|
||
local attribute is_contr_right_inverse [instance]
|
||
local attribute is_contr_right_coherence [instance]
|
||
theorem is_hprop_is_equiv [instance] : is_hprop (is_equiv f) :=
|
||
is_hprop_of_imp_is_contr (λ(H : is_equiv f), is_trunc_equiv_closed -2 (equiv.symm !sigma_char'))
|
||
|
||
end is_equiv
|
||
|
||
namespace equiv
|
||
open is_equiv
|
||
variables {A B : Type}
|
||
|
||
protected definition eq_mk' {f f' : A → B} [H : is_equiv f] [H' : is_equiv f'] (p : f = f')
|
||
: equiv.mk f H = equiv.mk f' H' :=
|
||
apD011 equiv.mk p !is_hprop.elim
|
||
|
||
protected definition eq_mk {f f' : A ≃ B} (p : to_fun f = to_fun f') : f = f' :=
|
||
by (cases f; cases f'; apply (equiv.eq_mk' p))
|
||
end equiv
|