c37b5afe93
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
26 lines
1 KiB
Text
26 lines
1 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
-- Author: Leonardo de Moura
|
|
import classical hilbert bit decidable
|
|
using bit decidable
|
|
|
|
-- Excluded middle + Hilbert implies every proposition is decidable
|
|
definition to_bit (a : Bool) : bit
|
|
:= epsilon (λ b : bit, (b = '1) ↔ a)
|
|
|
|
theorem to_bit_def (a : Bool) : (to_bit a) = '1 ↔ a
|
|
:= or_elim (em a)
|
|
(assume Hp, epsilon_ax (exists_intro '1 (iff_intro (assume H, Hp) (assume H, refl b1))))
|
|
(assume Hn, epsilon_ax (exists_intro '0 (iff_intro (assume H, absurd_elim a H b0_ne_b1) (assume H, absurd_elim ('0 = '1) H Hn))))
|
|
|
|
theorem bool_decidable [instance] (a : Bool) : decidable a
|
|
:= bit_rec
|
|
(assume H0 : to_bit a = '0,
|
|
have e1 : ¬ to_bit a = '1, from subst (symm H0) b0_ne_b1,
|
|
have Hna : ¬a, from iff_mp_left (iff_flip_sign (to_bit_def a)) e1,
|
|
inr Hna)
|
|
(assume H1 : to_bit a = '1,
|
|
have Ha : a, from iff_mp_left (to_bit_def a) H1,
|
|
inl Ha)
|
|
(to_bit a)
|
|
(refl (to_bit a))
|