lean2/hott/homotopy/EM.hlean
2016-12-02 16:55:23 -08:00

512 lines
18 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Eilenberg MacLane spaces
-/
import hit.groupoid_quotient homotopy.hopf homotopy.freudenthal homotopy.homotopy_group
open algebra pointed nat eq category group is_trunc iso unit trunc equiv is_conn function is_equiv
trunc_index
namespace EM
open groupoid_quotient
variables {G : Group}
definition EM1' (G : Group) : Type :=
groupoid_quotient (Groupoid_of_Group G)
definition EM1 [constructor] (G : Group) : Type* :=
pointed.MK (EM1' G) (elt star)
definition base : EM1' G := elt star
definition pth : G → base = base := pth
definition resp_mul (g h : G) : pth (g * h) = pth g ⬝ pth h := resp_comp h g
definition resp_one : pth (1 : G) = idp :=
resp_id star
definition resp_inv (g : G) : pth (g⁻¹) = (pth g)⁻¹ :=
resp_inv g
local attribute pointed.MK pointed.carrier EM1 EM1' [reducible]
protected definition rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) (x : EM1' G) :
P x :=
begin
induction x,
{ induction g, exact Pb},
{ induction a, induction b, exact Pp f},
{ induction a, induction b, induction c, exact Pmul f g}
end
protected definition rec_on {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
(x : EM1' G) (Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb)
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h) : P x :=
EM.rec Pb Pp Pmul x
protected definition set_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_set (P x)]
(Pb : P base) (Pp : Π(g : G), Pb =[pth g] Pb) (x : EM1' G) : P x :=
EM.rec Pb Pp !center x
protected definition prop_rec {P : EM1' G → Type} [H : Π(x : EM1' G), is_prop (P x)]
(Pb : P base) (x : EM1' G) : P x :=
EM.rec Pb !center !center x
definition rec_pth {P : EM1' G → Type} [H : Π(x : EM1' G), is_trunc 1 (P x)]
{Pb : P base} {Pp : Π(g : G), Pb =[pth g] Pb}
(Pmul : Π(g h : G), change_path (resp_mul g h) (Pp (g * h)) = Pp g ⬝o Pp h)
(g : G) : apd (EM.rec Pb Pp Pmul) (pth g) = Pp g :=
proof !rec_pth qed
protected definition elim {P : Type} [is_trunc 1 P] (Pb : P) (Pp : Π(g : G), Pb = Pb)
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (x : EM1' G) : P :=
begin
induction x,
{ exact Pb},
{ exact Pp f},
{ exact Pmul f g}
end
protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : EM1' G)
(Pb : P) (Pp : G → Pb = Pb) (Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) : P :=
EM.elim Pb Pp Pmul x
protected definition set_elim [reducible] {P : Type} [is_set P] (Pb : P) (Pp : G → Pb = Pb)
(x : EM1' G) : P :=
EM.elim Pb Pp !center x
protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pb : P) (x : EM1' G) : P :=
EM.elim Pb !center !center x
definition elim_pth {P : Type} [is_trunc 1 P] {Pb : P} {Pp : G → Pb = Pb}
(Pmul : Π(g h : G), Pp (g * h) = Pp g ⬝ Pp h) (g : G) : ap (EM.elim Pb Pp Pmul) (pth g) = Pp g :=
proof !elim_pth qed
protected definition elim_set.{u} (Pb : Set.{u}) (Pp : Π(g : G), Pb ≃ Pb)
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (x : EM1' G) : Set.{u} :=
groupoid_quotient.elim_set (λu, Pb) (λu v, Pp) (λu v w g h, proof Pmul h g qed) x
theorem elim_set_pth {Pb : Set} {Pp : Π(g : G), Pb ≃ Pb}
(Pmul : Π(g h : G) (x : Pb), Pp (g * h) x = Pp h (Pp g x)) (g : G) :
transport (EM.elim_set Pb Pp Pmul) (pth g) = Pp g :=
!elim_set_pth
end EM
attribute EM.base [constructor]
attribute EM.rec EM.elim [unfold 7] [recursor 7]
attribute EM.rec_on EM.elim_on [unfold 4]
attribute EM.set_rec EM.set_elim [unfold 6]
attribute EM.prop_rec EM.prop_elim EM.elim_set [unfold 5]
namespace EM
open groupoid_quotient
variables (G : Group)
definition base_eq_base_equiv : (base = base :> EM1 G) ≃ G :=
!elt_eq_elt_equiv
definition fundamental_group_EM1 : π₁ (EM1 G) ≃g G :=
begin
fapply isomorphism_of_equiv,
{ exact trunc_equiv_trunc 0 !base_eq_base_equiv ⬝e trunc_equiv 0 G},
{ intros g h, induction g with p, induction h with q,
exact encode_con p q}
end
proposition is_trunc_EM1 [instance] : is_trunc 1 (EM1 G) :=
!is_trunc_groupoid_quotient
proposition is_trunc_EM1' [instance] : is_trunc 1 (EM1' G) :=
!is_trunc_groupoid_quotient
proposition is_conn_EM1' [instance] : is_conn 0 (EM1' G) :=
by apply @is_conn_groupoid_quotient; esimp; exact _
proposition is_conn_EM1 [instance] : is_conn 0 (EM1 G) :=
is_conn_EM1' G
variable {G}
definition EM1_map [unfold 7] {X : Type*} (e : G → Ω X)
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G → X :=
begin
intro x, induction x using EM.elim,
{ exact Point X },
{ exact e g },
{ exact r g h }
end
/- Uniqueness of K(G, 1) -/
definition EM1_pmap [constructor] {X : Type*} (e : G → Ω X)
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G →* X :=
pmap.mk (EM1_map e r) idp
variable (G)
definition loop_EM1 [constructor] : G ≃* Ω (EM1 G) :=
(pequiv_of_equiv (base_eq_base_equiv G) idp)⁻¹ᵉ*
variable {G}
definition loop_EM1_pmap {X : Type*} (e : G →* Ω X)
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] :
Ω→(EM1_pmap e r) ∘* loop_EM1 G ~* e :=
begin
fapply phomotopy.mk,
{ intro g, refine !idp_con ⬝ elim_pth r g },
{ apply is_set.elim }
end
definition EM1_pequiv'.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃* Ω X)
(r : Πg h, e (g * h) = e g ⬝ e h) [is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
begin
apply pequiv_of_pmap (EM1_pmap e r),
apply whitehead_principle_pointed 1,
intro k, cases k with k,
{ apply @is_equiv_of_is_contr,
all_goals (esimp; exact _)},
{ cases k with k,
{ apply is_equiv_trunc_functor, esimp,
apply is_equiv.homotopy_closed, rotate 1,
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loop_EM1_pmap _ _) },
apply is_equiv_compose e },
{ apply @is_equiv_of_is_contr,
do 2 exact trivial_homotopy_group_of_is_trunc _ (succ_lt_succ !zero_lt_succ)}}
end
definition EM1_pequiv.{u} {G : Group.{u}} {X : pType.{u}} (e : G ≃g π₁ X)
[is_conn 0 X] [is_trunc 1 X] : EM1 G ≃* X :=
begin
apply EM1_pequiv' (pequiv_of_isomorphism e ⬝e* ptrunc_pequiv 0 (Ω X)),
refine is_equiv.preserve_binary_of_inv_preserve _ mul concat _,
intro p q,
exact to_respect_mul e⁻¹ᵍ (tr p) (tr q)
end
definition EM1_pequiv_type (X : Type*) [is_conn 0 X] [is_trunc 1 X] : EM1 (π₁ X) ≃* X :=
EM1_pequiv !isomorphism.refl
end EM
open hopf susp
namespace EM
/- EM1 G is an h-space if G is an abelian group. This allows us to construct K(G,n) for n ≥ 2 -/
variables {G : AbGroup} (n : )
definition EM1_mul [unfold 2 3] (x x' : EM1' G) : EM1' G :=
begin
induction x,
{ exact x'},
{ induction x' using EM.set_rec,
{ exact pth g},
{ exact abstract begin apply loop_pathover, apply square_of_eq,
refine !resp_mul⁻¹ ⬝ _ ⬝ !resp_mul,
exact ap pth !mul.comm end end}},
{ refine EM.prop_rec _ x', apply resp_mul }
end
variable (G)
definition EM1_mul_one (x : EM1' G) : EM1_mul x base = x :=
begin
induction x using EM.set_rec,
{ reflexivity},
{ apply eq_pathover_id_right, apply hdeg_square, refine EM.elim_pth _ g}
end
definition h_space_EM1 [constructor] [instance] : h_space (EM1' G) :=
begin
fapply h_space.mk,
{ exact EM1_mul},
{ exact base},
{ intro x', reflexivity},
{ apply EM1_mul_one}
end
/- K(G, n+1) -/
definition EMadd1 : → Type*
| 0 := EM1 G
| (n+1) := ptrunc (n+2) (psusp (EMadd1 n))
definition EMadd1_succ [unfold_full] (n : ) :
EMadd1 G (succ n) = ptrunc (n.+2) (psusp (EMadd1 G n)) :=
idp
definition loop_EM2 : Ω[1] (EMadd1 G 1) ≃* EM1 G :=
hopf.delooping (EM1' G) idp
definition is_conn_EMadd1 [instance] (n : ) : is_conn n (EMadd1 G n) :=
begin
induction n with n IH,
{ apply is_conn_EM1 },
{ rewrite EMadd1_succ, esimp, exact _ }
end
definition is_trunc_EMadd1 [instance] (n : ) : is_trunc (n+1) (EMadd1 G n) :=
begin
cases n with n,
{ apply is_trunc_EM1 },
{ apply is_trunc_trunc }
end
/- loops of an EM-space -/
definition loop_EMadd1 (n : ) : EMadd1 G n ≃* Ω (EMadd1 G (succ n)) :=
begin
cases n with n,
{ exact !loop_EM2⁻¹ᵉ* },
{ rewrite [EMadd1_succ G (succ n)],
refine (ptrunc_pequiv (succ n + 1) _)⁻¹ᵉ* ⬝e* _ ⬝e* (loop_ptrunc_pequiv _ _)⁻¹ᵉ*,
have succ n + 1 ≤ 2 * succ n, from add_mul_le_mul_add n 1 1,
refine freudenthal_pequiv _ this }
end
definition loopn_EMadd1_pequiv_EM1 (G : AbGroup) (n : ) : EM1 G ≃* Ω[n] (EMadd1 G n) :=
begin
induction n with n e,
{ reflexivity },
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
refine _ ⬝e* loopn_pequiv_loopn n !loop_EMadd1,
exact e }
end
-- use loopn_EMadd1_pequiv_EM1 in this definition?
definition loopn_EMadd1 (G : AbGroup) (n : ) : G ≃* Ω[succ n] (EMadd1 G n) :=
begin
induction n with n e,
{ apply loop_EM1 },
{ refine _ ⬝e* !loopn_succ_in⁻¹ᵉ*,
refine _ ⬝e* loopn_pequiv_loopn (succ n) !loop_EMadd1,
exact e }
end
definition loopn_EMadd1_succ [unfold_full] (G : AbGroup) (n : ) : loopn_EMadd1 G (succ n) ~*
!loopn_succ_in⁻¹ᵉ* ∘* apn (succ n) !loop_EMadd1 ∘* loopn_EMadd1 G n :=
by reflexivity
definition EM_up {G : AbGroup} {X : Type*} {n : } (e : Ω[succ (succ n)] X ≃* G)
: Ω[succ n] (Ω X) ≃* G :=
!loopn_succ_in⁻¹ᵉ* ⬝e* e
definition is_homomorphism_EM_up {G : AbGroup} {X : Type*} {n : }
(e : Ω[succ (succ n)] X ≃* G)
(r : Π(p q : Ω[succ (succ n)] X), e (p ⬝ q) = e p * e q)
(p q : Ω[succ n] (Ω X)) : EM_up e (p ⬝ q) = EM_up e p * EM_up e q :=
begin
refine _ ⬝ !r, apply ap e, esimp, apply apn_con
end
definition EMadd1_pmap [unfold 8] {G : AbGroup} {X : Type*} (n : )
(e : Ω[succ n] X ≃* G)
(r : Πp q, e (p ⬝ q) = e p * e q)
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X :=
begin
revert X e r H1 H2, induction n with n f: intro X e r H1 H2,
{ exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) },
rewrite [EMadd1_succ],
exact ptrunc.elim ((succ n).+1)
(psusp.elim (f _ (EM_up e) (is_homomorphism_EM_up e r) _ _)),
end
definition EMadd1_pmap_succ {G : AbGroup} {X : Type*} (n : ) (e : Ω[succ (succ n)] X ≃* G)
r [H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] : EMadd1_pmap (succ n) e r =
ptrunc.elim ((succ n).+1) (psusp.elim (EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r))) :=
by reflexivity
definition loop_EMadd1_pmap {G : AbGroup} {X : Type*} {n : } (e : Ω[succ (succ n)] X ≃* G)
(r : Πp q, e (p ⬝ q) = e p * e q)
[H1 : is_conn (succ n) X] [H2 : is_trunc ((succ n).+1) X] :
Ω→(EMadd1_pmap (succ n) e r) ∘* loop_EMadd1 G n ~*
EMadd1_pmap n (EM_up e) (is_homomorphism_EM_up e r) :=
begin
cases n with n,
{ apply hopf_delooping_elim },
{ refine !passoc⁻¹* ⬝* _,
rewrite [EMadd1_pmap_succ (succ n)],
refine pwhisker_right _ !ap1_ptrunc_elim ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (ptrunc_elim_freudenthal_pequiv
(succ n) (succ (succ n)) (add_mul_le_mul_add n 1 1) _) ⬝* _,
reflexivity }
end
definition loopn_EMadd1_pmap' {G : AbGroup} {X : Type*} {n : } (e : Ω[succ n] X ≃* G)
(r : Πp q, e (p ⬝ q) = e p * e q)
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] :
Ω→[succ n](EMadd1_pmap n e r) ∘* loopn_EMadd1 G n ~* e⁻¹ᵉ* :=
begin
revert X e r H1 H2, induction n with n IH: intro X e r H1 H2,
{ apply loop_EM1_pmap },
refine pwhisker_left _ !loopn_EMadd1_succ ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !loopn_succ_in_inv_natural ⬝* _,
refine !passoc ⬝* _,
refine pwhisker_left _ (!passoc⁻¹* ⬝*
pwhisker_right _ (!apn_pcompose⁻¹* ⬝* apn_phomotopy _ !loop_EMadd1_pmap) ⬝*
!IH ⬝* !pinv_trans_pinv_left) ⬝* _,
apply pinv_pcompose_cancel_left
end
definition EMadd1_pequiv' {G : AbGroup} {X : Type*} (n : ) (e : Ω[succ n] X ≃* G)
(r : Π(p q : Ω[succ n] X), e (p ⬝ q) = e p * e q)
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
begin
apply pequiv_of_pmap (EMadd1_pmap n e r),
have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n),
have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1,
refine whitehead_principle_pointed (n.+1) _ _,
intro k, apply @nat.lt_by_cases k (succ n): intro H,
{ apply @is_equiv_of_is_contr,
do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)},
{ cases H, esimp, apply is_equiv_trunc_functor, esimp,
apply is_equiv.homotopy_closed, rotate 1,
{ symmetry, exact phomotopy_pinv_right_of_phomotopy (loopn_EMadd1_pmap' _ _) },
apply is_equiv_compose (e⁻¹ᵉ*)},
{ apply @is_equiv_of_is_contr,
do 2 exact trivial_homotopy_group_of_is_trunc _ H}
end
definition EMadd1_pequiv {G : AbGroup} {X : Type*} (n : ) (e : πg[n+1] X ≃g G)
[H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X :=
begin
have is_set (Ω[succ n] X), from !is_set_loopn,
apply EMadd1_pequiv' n ((ptrunc_pequiv _ _)⁻¹ᵉ* ⬝e* pequiv_of_isomorphism e),
intro p q, esimp, exact to_respect_mul e (tr p) (tr q)
end
definition EMadd1_pequiv_succ {G : AbGroup} {X : Type*} (n : ) (e : πag[n+2] X ≃g G)
[H1 : is_conn (n.+1) X] [H2 : is_trunc (n.+2) X] : EMadd1 G (succ n) ≃* X :=
EMadd1_pequiv (succ n) e
definition ghomotopy_group_EMadd1 (n : ) : πg[n+1] (EMadd1 G n) ≃g G :=
begin
change π₁ (Ω[n] (EMadd1 G n)) ≃g G,
refine homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n)⁻¹ᵉ* ⬝g _,
apply fundamental_group_EM1,
end
definition EMadd1_pequiv_type (X : Type*) (n : ) [is_conn (n+1) X] [is_trunc (n+1+1) X]
: EMadd1 (πag[n+2] X) (succ n) ≃* X :=
EMadd1_pequiv_succ n !isomorphism.refl
/- K(G, n) -/
definition EM (G : AbGroup) : → Type*
| 0 := G
| (k+1) := EMadd1 G k
namespace ops
abbreviation K := @EM
end ops
open ops
definition homotopy_group_EM (n : ) : π[n] (EM G n) ≃* G :=
begin
cases n with n,
{ rexact ptrunc_pequiv 0 (G) },
{ exact pequiv_of_isomorphism (ghomotopy_group_EMadd1 G n)}
end
definition ghomotopy_group_EM (n : ) : πg[n+1] (EM G (n+1)) ≃g G :=
ghomotopy_group_EMadd1 G n
definition is_conn_EM [instance] (n : ) : is_conn (n.-1) (EM G n) :=
begin
cases n with n,
{ apply is_conn_minus_one, apply tr, unfold [EM], exact 1},
{ apply is_conn_EMadd1}
end
definition is_conn_EM_succ [instance] (n : ) : is_conn n (EM G (succ n)) :=
is_conn_EM G (succ n)
definition is_trunc_EM [instance] (n : ) : is_trunc n (EM G n) :=
begin
cases n with n,
{ unfold [EM], apply semigroup.is_set_carrier},
{ apply is_trunc_EMadd1}
end
definition loop_EM (n : ) : Ω (K G (succ n)) ≃* K G n :=
begin
cases n with n,
{ refine _ ⬝e* pequiv_of_isomorphism (fundamental_group_EM1 G),
symmetry, apply ptrunc_pequiv },
{ exact !loop_EMadd1⁻¹ᵉ* }
end
open circle int
definition EM_pequiv_circle : K ag 1 ≃* S¹* :=
EM1_pequiv fundamental_group_of_circle⁻¹ᵍ
/- Functorial action of Eilenberg-Maclane spaces -/
definition EM1_functor [constructor] {G H : Group} (φ : G →g H) : EM1 G →* EM1 H :=
begin
fconstructor,
{ intro g, induction g,
{ exact base },
{ exact pth (φ g) },
{ exact ap pth (to_respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }},
{ reflexivity }
end
definition EMadd1_functor [constructor] {G H : AbGroup} (φ : G →g H) (n : ) :
EMadd1 G n →* EMadd1 H n :=
begin
induction n with n ψ,
{ exact EM1_functor φ },
{ apply ptrunc_functor, apply psusp_functor, exact ψ }
end
definition EM_functor [unfold 4] {G H : AbGroup} (φ : G →g H) (n : ) :
K G n →* K H n :=
begin
cases n with n,
{ exact pmap_of_homomorphism φ },
{ exact EMadd1_functor φ n }
end
-- TODO: (K G n →* K H n) ≃ (G →g H)
/- Equivalence of Groups and pointed connected 1-truncated types -/
definition ptruncconntype10_pequiv (X Y : 1-Type*[0]) (e : π₁ X ≃g π₁ Y) : X ≃* Y :=
(EM1_pequiv !isomorphism.refl)⁻¹ᵉ* ⬝e* EM1_pequiv e
definition EM1_pequiv_ptruncconntype10 (X : 1-Type*[0]) : EM1 (π₁ X) ≃* X :=
EM1_pequiv_type X
definition Group_equiv_ptruncconntype10 [constructor] : Group ≃ 1-Type*[0] :=
equiv.MK (λG, ptruncconntype.mk (EM1 G) _ pt !is_conn_EM1)
(λX, π₁ X)
begin intro X, apply ptruncconntype_eq, esimp, exact EM1_pequiv_type X end
begin intro G, apply eq_of_isomorphism, apply fundamental_group_EM1 end
/- Equivalence of AbGroups and pointed n-connected (n+1)-truncated types (n ≥ 1) -/
open trunc_index
definition ptruncconntype_pequiv : Π(n : ) (X Y : (n.+1)-Type*[n])
(e : πg[n+1] X ≃g πg[n+1] Y), X ≃* Y
| 0 X Y e := ptruncconntype10_pequiv X Y e
| (succ n) X Y e :=
begin
refine (EMadd1_pequiv_succ n _)⁻¹ᵉ* ⬝e* EMadd1_pequiv_succ n !isomorphism.refl,
exact e
end
definition EM1_pequiv_ptruncconntype (n : ) (X : (n+1+1)-Type*[n+1]) :
EMadd1 (πag[n+2] X) (succ n) ≃* X :=
EMadd1_pequiv_type X n
definition AbGroup_equiv_ptruncconntype' [constructor] (n : ) :
AbGroup ≃ (n + 1 + 1)-Type*[n+1] :=
equiv.MK
(λG, ptruncconntype.mk (EMadd1 G (n+1)) _ pt _)
(λX, πag[n+2] X)
begin intro X, apply ptruncconntype_eq, apply EMadd1_pequiv_type end
begin intro G, apply AbGroup_eq_of_isomorphism, exact ghomotopy_group_EMadd1 G (n+1) end
definition AbGroup_equiv_ptruncconntype [constructor] (n : ) :
AbGroup ≃ (n.+2)-Type*[n.+1] :=
AbGroup_equiv_ptruncconntype' n
end EM