2e9141b7e1
This hack is not needed anymore. Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
62 lines
2.1 KiB
Text
62 lines
2.1 KiB
Text
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Author: Leonardo de Moura, Jeremy Avigad
|
||
import logic.inhabited logic.eq logic.decidable
|
||
|
||
-- data.prod
|
||
-- =========
|
||
|
||
open inhabited decidable eq.ops
|
||
|
||
-- The cartesian product.
|
||
inductive prod (A B : Type) : Type :=
|
||
mk : A → B → prod A B
|
||
|
||
definition pair := @prod.mk
|
||
|
||
namespace prod
|
||
infixl `×` := prod
|
||
|
||
-- notation for n-ary tuples
|
||
notation `(` h `,` t:(foldl `,` (e r, prod.mk r e) h) `)` := t
|
||
|
||
variables {A B : Type}
|
||
protected theorem destruct {P : A × B → Prop} (p : A × B) (H : ∀a b, P (a, b)) : P p :=
|
||
rec H p
|
||
|
||
definition pr1 (p : prod A B) := rec (λ x y, x) p
|
||
definition pr2 (p : prod A B) := rec (λ x y, y) p
|
||
notation `pr₁` := pr1
|
||
notation `pr₂` := pr2
|
||
|
||
variables (a : A) (b : B)
|
||
|
||
theorem pr1.pair : pr₁ (a, b) = a :=
|
||
rfl
|
||
|
||
theorem pr2.pair : pr₂ (a, b) = b :=
|
||
rfl
|
||
|
||
theorem prod_ext (p : prod A B) : pair (pr₁ p) (pr₂ p) = p :=
|
||
destruct p (λx y, eq.refl (x, y))
|
||
|
||
variables {a₁ a₂ : A} {b₁ b₂ : B}
|
||
|
||
theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) :=
|
||
assume H1 H2, H1 ▸ H2 ▸ rfl
|
||
|
||
protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ :=
|
||
destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂))
|
||
|
||
protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) :=
|
||
take (H₁ : inhabited A) (H₂ : inhabited B),
|
||
inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b)))
|
||
|
||
protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) :=
|
||
take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B),
|
||
have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from
|
||
iff.intro
|
||
(assume H, H ▸ and.intro rfl rfl)
|
||
(assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)),
|
||
decidable_iff_equiv _ (iff.symm H₃)
|
||
end prod
|