1ec8f9d536
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
290 lines
10 KiB
C++
290 lines
10 KiB
C++
/*
|
||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Author: Leonardo de Moura
|
||
*/
|
||
#include "kernel/builtin.h"
|
||
#include "kernel/environment.h"
|
||
#include "kernel/abstract.h"
|
||
|
||
#ifndef LEAN_DEFAULT_LEVEL_SEPARATION
|
||
#define LEAN_DEFAULT_LEVEL_SEPARATION 512
|
||
#endif
|
||
|
||
namespace lean {
|
||
expr mk_bin_rop(expr const & op, expr const & unit, unsigned num_args, expr const * args) {
|
||
if (num_args == 0) {
|
||
return unit;
|
||
} else {
|
||
expr r = args[num_args - 1];
|
||
unsigned i = num_args - 1;
|
||
while (i > 0) {
|
||
--i;
|
||
r = mk_app({op, args[i], r});
|
||
}
|
||
return r;
|
||
}
|
||
}
|
||
expr mk_bin_rop(expr const & op, expr const & unit, std::initializer_list<expr> const & l) {
|
||
return mk_bin_rop(op, unit, l.size(), l.begin());
|
||
}
|
||
|
||
expr mk_bin_lop(expr const & op, expr const & unit, unsigned num_args, expr const * args) {
|
||
if (num_args == 0) {
|
||
return unit;
|
||
} else {
|
||
expr r = args[0];
|
||
for (unsigned i = 1; i < num_args; i++) {
|
||
r = mk_app({op, r, args[i]});
|
||
}
|
||
return r;
|
||
}
|
||
}
|
||
expr mk_bin_lop(expr const & op, expr const & unit, std::initializer_list<expr> const & l) {
|
||
return mk_bin_lop(op, unit, l.size(), l.begin());
|
||
}
|
||
|
||
// =======================================
|
||
// Bultin universe variables m and u
|
||
static level m_lvl(name("M"));
|
||
static level u_lvl(name("U"));
|
||
expr const TypeM = Type(m_lvl);
|
||
expr const TypeU = Type(u_lvl);
|
||
// =======================================
|
||
|
||
// =======================================
|
||
// Boolean Type
|
||
static char const * g_Bool_str = "Bool";
|
||
static name g_Bool_name(g_Bool_str);
|
||
static format g_Bool_fmt(g_Bool_str);
|
||
class bool_type_value : public value {
|
||
public:
|
||
virtual ~bool_type_value() {}
|
||
virtual expr get_type() const { return Type(); }
|
||
virtual name get_name() const { return g_Bool_name; }
|
||
};
|
||
expr const Bool = mk_value(*(new bool_type_value()));
|
||
expr mk_bool_type() { return Bool; }
|
||
MK_IS_BUILTIN(is_bool, Bool)
|
||
// =======================================
|
||
|
||
// =======================================
|
||
// Boolean values True and False
|
||
static name g_true_name("true");
|
||
static name g_false_name("false");
|
||
static name g_true_u_name("\u22A4"); // ⊤
|
||
static name g_false_u_name("\u22A5"); // ⊥
|
||
/**
|
||
\brief Semantic attachments for Boolean values.
|
||
*/
|
||
class bool_value_value : public value {
|
||
bool m_val;
|
||
public:
|
||
bool_value_value(bool v):m_val(v) {}
|
||
virtual ~bool_value_value() {}
|
||
virtual expr get_type() const { return Bool; }
|
||
virtual name get_name() const { return m_val ? g_true_name : g_false_name; }
|
||
virtual name get_unicode_name() const { return m_val ? g_true_u_name : g_false_u_name; }
|
||
// LCOV_EXCL_START
|
||
virtual bool operator==(value const & other) const {
|
||
// This method is unreachable because there is only one copy of True and False in the system,
|
||
// and they have different hashcodes.
|
||
bool_value_value const * _other = dynamic_cast<bool_value_value const*>(&other);
|
||
return _other && _other->m_val == m_val;
|
||
}
|
||
// LCOV_EXCL_STOP
|
||
bool get_val() const { return m_val; }
|
||
};
|
||
expr const True = mk_value(*(new bool_value_value(true)));
|
||
expr const False = mk_value(*(new bool_value_value(false)));
|
||
expr mk_bool_value(bool v) {
|
||
return v ? True : False;
|
||
}
|
||
bool is_bool_value(expr const & e) {
|
||
return is_value(e) && dynamic_cast<bool_value_value const *>(&to_value(e)) != nullptr;
|
||
}
|
||
bool to_bool(expr const & e) {
|
||
lean_assert(is_bool_value(e));
|
||
return static_cast<bool_value_value const &>(to_value(e)).get_val();
|
||
}
|
||
bool is_true(expr const & e) {
|
||
return is_bool_value(e) && to_bool(e);
|
||
}
|
||
bool is_false(expr const & e) {
|
||
return is_bool_value(e) && !to_bool(e);
|
||
}
|
||
// =======================================
|
||
|
||
// =======================================
|
||
// If-then-else builtin operator
|
||
static name g_if_name("if");
|
||
static format g_if_fmt(g_if_name);
|
||
/**
|
||
\brief Semantic attachment for if-then-else operator with type
|
||
<code>Pi (A : Type), Bool -> A -> A -> A</code>
|
||
*/
|
||
class if_fn_value : public value {
|
||
expr m_type;
|
||
public:
|
||
if_fn_value() {
|
||
expr A = Const("A");
|
||
// Pi (A: Type), bool -> A -> A -> A
|
||
m_type = Pi({A, TypeU}, Bool >> (A >> (A >> A)));
|
||
}
|
||
virtual ~if_fn_value() {}
|
||
virtual expr get_type() const { return m_type; }
|
||
virtual name get_name() const { return g_if_name; }
|
||
virtual bool normalize(unsigned num_args, expr const * args, expr & r) const {
|
||
if (num_args == 5 && is_bool_value(args[2])) {
|
||
if (to_bool(args[2]))
|
||
r = args[3]; // if A true a b --> a
|
||
else
|
||
r = args[4]; // if A false a b --> b
|
||
return true;
|
||
} else if (num_args == 5 && args[3] == args[4]) {
|
||
r = args[3]; // if A c a a --> a
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
};
|
||
MK_BUILTIN(if_fn, if_fn_value);
|
||
MK_IS_BUILTIN(is_if_fn, mk_if_fn());
|
||
bool is_if(expr const & n, expr & c, expr & t, expr & e) {
|
||
if (is_if(n)) {
|
||
c = arg(n, 2);
|
||
t = arg(n, 3);
|
||
e = arg(n, 4);
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
// =======================================
|
||
|
||
MK_CONSTANT(implies_fn, name("implies"));
|
||
MK_IS_BINARY_APP(is_implies)
|
||
MK_CONSTANT(iff_fn, name("iff"));
|
||
MK_IS_BINARY_APP(is_iff)
|
||
MK_CONSTANT(and_fn, name("and"));
|
||
MK_IS_BINARY_APP(is_and)
|
||
MK_CONSTANT(or_fn, name("or"));
|
||
MK_IS_BINARY_APP(is_or)
|
||
MK_CONSTANT(not_fn, name("not"));
|
||
bool is_not(expr const & e, expr & a) {
|
||
if (is_not(e)) {
|
||
a = arg(e, 1);
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
MK_CONSTANT(forall_fn, name("forall"));
|
||
MK_CONSTANT(exists_fn, name("exists"));
|
||
MK_CONSTANT(homo_eq_fn, name("eq"));
|
||
bool is_homo_eq(expr const & e, expr & lhs, expr & rhs) {
|
||
if (is_homo_eq(e)) {
|
||
lhs = arg(e, 2);
|
||
rhs = arg(e, 3);
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// Axioms
|
||
MK_CONSTANT(mp_fn, name("MP"));
|
||
MK_CONSTANT(discharge_fn, name("Discharge"));
|
||
MK_CONSTANT(case_fn, name("Case"));
|
||
MK_CONSTANT(refl_fn, name("Refl"));
|
||
MK_CONSTANT(trans_ext_fn, name("TransExt"));
|
||
MK_CONSTANT(subst_fn, name("Subst"));
|
||
MK_CONSTANT(eta_fn, name("Eta"));
|
||
MK_CONSTANT(imp_antisym_fn, name("ImpAntisym"));
|
||
MK_CONSTANT(abst_fn, name("Abst"));
|
||
|
||
void import_basic(environment & env) {
|
||
if (!env.mark_builtin_imported("basic"))
|
||
return;
|
||
env.add_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION);
|
||
env.add_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION);
|
||
|
||
expr p1 = Bool >> Bool;
|
||
expr p2 = Bool >> p1;
|
||
expr f = Const("f");
|
||
expr g = Const("g");
|
||
expr a = Const("a");
|
||
expr b = Const("b");
|
||
expr c = Const("c");
|
||
expr x = Const("x");
|
||
expr y = Const("y");
|
||
expr A = Const("A");
|
||
expr A_pred = A >> Bool;
|
||
expr B = Const("B");
|
||
expr C = Const("C");
|
||
expr q_type = Pi({A, TypeU}, A_pred >> Bool);
|
||
expr piABx = Pi({x, A}, B(x));
|
||
expr A_arrow_u = A >> TypeU;
|
||
expr P = Const("P");
|
||
expr H = Const("H");
|
||
expr H1 = Const("H1");
|
||
expr H2 = Const("H2");
|
||
|
||
env.add_builtin(mk_bool_type());
|
||
env.add_builtin(mk_bool_value(true));
|
||
env.add_builtin(mk_bool_value(false));
|
||
env.add_builtin(mk_if_fn());
|
||
|
||
// implies(x, y) := if x y True
|
||
env.add_definition(implies_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, True)));
|
||
|
||
// iff(x, y) := x = y
|
||
env.add_definition(iff_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Eq(x, y)));
|
||
|
||
// not(x) := if x False True
|
||
env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True)));
|
||
|
||
// or(x, y) := Not(x) => y
|
||
env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Implies(Not(x), y)));
|
||
|
||
// and(x, y) := Not(x => Not(y))
|
||
env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, Not(Implies(x, Not(y)))));
|
||
|
||
// forall : Pi (A : Type u), (A -> Bool) -> Bool
|
||
env.add_definition(forall_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Eq(P, Fun({x, A}, True))));
|
||
// TODO(Leo): introduce epsilon
|
||
env.add_definition(exists_fn_name, q_type, Fun({{A, TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x)))))));
|
||
|
||
// homogeneous equality
|
||
env.add_definition(homo_eq_fn_name, Pi({{A, TypeU}, {x, A}, {y, A}}, Bool), Fun({{A, TypeU}, {x, A}, {y, A}}, Eq(x, y)));
|
||
|
||
// MP : Pi (a b : Bool) (H1 : a => b) (H2 : a), b
|
||
env.add_axiom(mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, a}}, b));
|
||
|
||
// Discharge : Pi (a b : Bool) (H : a -> b), a => b
|
||
env.add_axiom(discharge_fn_name, Pi({{a, Bool}, {b, Bool}, {H, a >> b}}, Implies(a, b)));
|
||
|
||
// Case : Pi (P : Bool -> Bool) (H1 : P True) (H2 : P False) (a : Bool), P a
|
||
env.add_axiom(case_fn_name, Pi({{P, Bool >> Bool}, {H1, P(True)}, {H2, P(False)}, {a, Bool}}, P(a)));
|
||
|
||
// Refl : Pi (A : Type u) (a : A), a = a
|
||
env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a)));
|
||
|
||
// TransExt : Pi (A B C: Type u) (a : A) (b : B) (c : C) (H1 : a = b) (H2 : b = c), a = c
|
||
env.add_axiom(trans_ext_fn_name, Pi({{A, TypeU}, {B, TypeU}, {C, TypeU}, {a, A}, {b, B}, {c, C}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)));
|
||
|
||
// Subst : Pi (A : Type u) (a b : A) (P : A -> bool) (H1 : P a) (H2 : a = b), P b
|
||
env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {P, A_pred}, {H1, P(a)}, {H2, Eq(a, b)}}, P(b)));
|
||
|
||
// Eta : Pi (A : Type u) (B : A -> Type u), f : (Pi x : A, B x), (Fun x : A => f x) = f
|
||
env.add_axiom(eta_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}}, Eq(Fun({x, A}, f(x)), f)));
|
||
|
||
// ImpliesAntisym : Pi (a b : Bool) (H1 : a => b) (H2 : b => a), a = b
|
||
env.add_axiom(imp_antisym_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Implies(a, b)}, {H2, Implies(b, a)}}, Eq(a, b)));
|
||
|
||
// Abst : Pi (A : Type u) (B : A -> Type u), f g : (Pi x : A, B x), H : (Pi x : A, (f x) = (g x)), f = g
|
||
env.add_axiom(abst_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi(x, A, Eq(f(x), g(x)))}}, Eq(f, g)));
|
||
}
|
||
}
|