lean2/library/data/category.lean
Floris van Doorn e9fc4f14a0 feat(library/data/category): add category theory
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-09-05 09:56:57 -07:00

151 lines
5.1 KiB
Text

-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Floris van Doorn
-- category
import logic.core.eq logic.core.connectives
import data.unit data.sigma data.prod
import struc.function
inductive category (ob : Type) (mor : ob → ob → Type) : Type :=
mk : Π (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C)
(id : Π {A : ob}, mor A A),
(Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
comp h (comp g f) = comp (comp h g) f) →
(Π {A B : ob} {f : mor A B}, comp f id = f) →
(Π {A B : ob} {f : mor A B}, comp id f = f) →
category ob mor
class category
namespace category
precedence `∘` : 60
section
parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor}
abbreviation compose := rec (λ comp id assoc idr idl, comp) Cat
abbreviation id := rec (λ comp id assoc idr idl, id) Cat
abbreviation ID (A : ob) := @id A
end
infixr `∘` := compose
section
parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor}
theorem assoc : Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
rec (λ comp id assoc idr idl, assoc) Cat
theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f :=
rec (λ comp id assoc idr idl, idr) Cat
theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f :=
rec (λ comp id assoc idr idl, idl) Cat
theorem left_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor B A}, i ∘ f = f) : i = id :=
calc
i = i ∘ id : eq.symm id_right
... = id : H
theorem right_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor A B}, f ∘ i = f) : i = id :=
calc
i = id ∘ i : eq.symm id_left
... = id : H
definition has_left_inverse {A B : ob} (f : mor A B) : Type :=
including Cat, Σ g, g ∘ f = id
definition left_inverse {A B : ob} (f : mor A B) (H : has_left_inverse f) : mor B A :=
sigma.dpr1 H
definition has_right_inverse {A B : ob} (f : mor A B) : Type :=
including Cat, Σ g, f ∘ g = id
definition right_inverse {A B : ob} (f : mor A B) (H : has_right_inverse f) : mor B A :=
sigma.dpr1 H
definition iso {A B : ob} (f : mor A B) : Type :=
including Cat, Σ g, f ∘ g = id ∧ g ∘ f = id
definition inverse {A B : ob} (f : mor A B) (H : iso f) : mor B A :=
sigma.dpr1 H
theorem iso_imp_left_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f :=
sorry
theorem iso_imp_right_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f :=
sorry
theorem left_right_inverse_imp_iso {A B : ob} (f : mor A B)
(Hl : has_left_inverse f) (Hr : has_right_inverse f) : iso f :=
sorry
postfix `⁻¹` := inverse
set_option pp.implicit true
-- theorem foo {A B : ob} {f : mor A B} (H : iso f) : true :=
-- including Cat, (λx (y : iso f),x) _ H
theorem compose_inverse {A B : ob} {f : mor A B} (H : iso f) : f ∘ f⁻¹ H = id :=
and.elim_left (sigma.dpr2 H)
theorem inverse_compose {A B : ob} {f : mor A B} (H : iso f) : f⁻¹ H ∘ f = id :=
and.elim_right (sigma.dpr2 H)
theorem inverse_unique {A B : ob} {f : mor A B} (H H' : iso f) : f⁻¹ H = f⁻¹ H' :=
sorry
-- calc
-- inverse f H = f⁻¹ H ∘ id : symm id.right
-- ... = f⁻¹ H ∘ f ∘ f⁻¹ H' : {symm (compose_inverse H')}
-- ... = (f⁻¹ H ∘ f) ∘ f⁻¹ H' : assoc
-- ... = id ∘ f⁻¹ H' : {inverse_compose H}
-- ... = f⁻¹ H' : id.left
definition mono {A B : ob} (f : mor A B) : Prop :=
including Cat, ∀⦃C⦄ {g h : mor C A}, f ∘ g = f ∘ h → g = h
definition epi {A B : ob} (f : mor A B) : Prop :=
including Cat, ∀⦃C⦄ {g h : mor B C}, g ∘ f = h ∘ f → g = h
end
postfix `⁻¹` := inverse
section
parameters {obC obD : Type} {morC : obC → obC → Type} {morD : obD → obD → Type}
parameters (C : category obC morC)
parameters (D : category obD morD)
definition tst (a b c : obC) (m1 : morC a b) (m2 : morC b c) :=
(λx y, x) (compose m2 m1) (including C, false)
definition tst2 (C : category obC morC) (a b c : obC) (m1 : morC a b) (m2 : morC b c) :=
compose m2 m1
parameter a : obC
parameter f : morC a a
-- inductive foo : Type :=
-- mk : including C, foo
-- inductive functor : Type :=
-- functor.mk : including C D,
-- Π (obF : obC → obD) (morF : Π{A B}, morC A B → morD (obF A) (obF B)),
-- (Π {A : obC}, morF (ID A) = ID (obF A)) →
-- (Π {A B C : obC} {f : morC A B} {g : morC B C}, morF (g ∘ f) = morF g ∘ morF f) →
-- functor
end
section
open unit
definition one [instance] : category unit (λa b, unit) :=
category.mk (λ a b c f g, star) (λ a, star) (λ a b c d f g h, unit.equal _ _)
(λ a b f, unit.equal _ _) (λ a b f, unit.equal _ _)
end
section
--need extensionality
definition type_cat : category Type (λA B, A → B) :=
mk (λ a b c f g, function.compose f g) (λ a, function.id) (λ a b c d f g h, sorry)
(λ a b f, sorry) (λ a b f, sorry)
end
end category