lean2/library/data/set/equinumerosity.lean
2016-02-29 13:15:48 -08:00

237 lines
8.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Two sets are equinumerous, or equipollent, if there is a bijection between them. It is sometimes
said that two such sets "have the same cardinality."
-/
import .classical_inverse data.nat
open eq.ops classical nat
/- two versions of Cantor's theorem -/
namespace set
variables {X : Type} {A : set X}
theorem not_surj_on_pow (f : X → set X) : ¬ surj_on f A (𝒫 A) :=
let diag := {x ∈ A | x ∉ f x} in
have diag ⊆ A, from sep_subset _ _,
assume H : surj_on f A (𝒫 A),
obtain x [(xA : x ∈ A) (Hx : f x = diag)], from H `diag ⊆ A`,
have x ∉ f x, from
suppose x ∈ f x,
have x ∈ diag, from Hx ▸ this,
have x ∉ f x, from and.right this,
show false, from this `x ∈ f x`,
have x ∈ diag, from and.intro xA this,
have x ∈ f x, from Hx⁻¹ ▸ this,
show false, from `x ∉ f x` this
theorem not_inj_on_pow {f : set X → X} (H : maps_to f (𝒫 A) A) : ¬ inj_on f (𝒫 A) :=
let diag := f ' {x ∈ 𝒫 A | f x ∉ x} in
have diag ⊆ A, from image_subset_of_maps_to_of_subset H (sep_subset _ _),
assume H₁ : inj_on f (𝒫 A),
have f diag ∈ diag, from by_contradiction
(suppose f diag ∉ diag,
have diag ∈ {x ∈ 𝒫 A | f x ∉ x}, from and.intro `diag ⊆ A` this,
have f diag ∈ diag, from mem_image_of_mem f this,
show false, from `f diag ∉ diag` this),
obtain x [(Hx : x ∈ 𝒫 A ∧ f x ∉ x) (fxeq : f x = f diag)], from this,
have x = diag, from H₁ (and.left Hx) `diag ⊆ A` fxeq,
have f diag ∉ diag, from this ▸ and.right Hx,
show false, from this `f diag ∈ diag`
end set
/-
The Schröder-Bernstein theorem. The proof below is nonconstructive, in three ways:
(1) We need a left inverse to g (we could get around this by supplying one).
(2) The definition of h below assumes that membership in Union U is decidable.
(3) We ultimately case split on whether B is empty, and choose an element if it isn't.
Rather than mark every auxiliary construction as "private", we put them all in a
separate namespace.
-/
namespace schroeder_bernstein
section
open set
parameters {X Y : Type}
parameter {A : set X}
parameter {B : set Y}
parameter {f : X → Y}
parameter (f_maps_to : maps_to f A B)
parameter (finj : inj_on f A)
parameter {g : Y → X}
parameter (g_maps_to : maps_to g B A)
parameter (ginj : inj_on g B)
parameter {dflt : Y} -- for now, assume B is nonempty
parameter (dfltB : dflt ∈ B)
/- g⁻¹ : A → B -/
noncomputable definition ginv : X → Y := inv_fun g B dflt
lemma ginv_maps_to : maps_to ginv A B :=
maps_to_inv_fun dfltB
lemma ginv_g_eq {b : Y} (bB : b ∈ B) : ginv (g b) = b :=
left_inv_on_inv_fun_of_inj_on dflt ginj bB
/- define a sequence of sets U -/
definition U : → set X
| U 0 := A \ (g ' B)
| U (n + 1) := g ' (f ' (U n))
lemma U_subset_A : ∀ n, U n ⊆ A
| 0 := show U 0 ⊆ A,
from diff_subset _ _
| (n + 1) := have f ' (U n) ⊆ B,
from image_subset_of_maps_to_of_subset f_maps_to (U_subset_A n),
show U (n + 1) ⊆ A,
from image_subset_of_maps_to_of_subset g_maps_to this
lemma g_ginv_eq {a : X} (aA : a ∈ A) (anU : a ∉ Union U) : g (ginv a) = a :=
have a ∈ g ' B, from by_contradiction
(suppose a ∉ g ' B,
have a ∈ U 0, from and.intro aA this,
have a ∈ Union U, from exists.intro 0 this,
show false, from anU this),
obtain b [(bB : b ∈ B) (gbeq : g b = a)], from this,
calc
g (ginv a) = g (ginv (g b)) : gbeq
... = g b : ginv_g_eq bB
... = a : gbeq
/- h : A → B -/
noncomputable definition h x := if x ∈ Union U then f x else ginv x
lemma h_maps_to : maps_to h A B :=
take a,
suppose a ∈ A,
show h a ∈ B, from
by_cases
(suppose a ∈ Union U,
by rewrite [↑h, if_pos this]; exact f_maps_to `a ∈ A`)
(suppose a ∉ Union U,
by rewrite [↑h, if_neg this]; exact ginv_maps_to `a ∈ A`)
/- h is injective -/
lemma aux {a₁ a₂ : X} (H₁ : a₁ ∈ Union U) (a₂A : a₂ ∈ A) (heq : h a₁ = h a₂) : a₂ ∈ Union U :=
obtain n (a₁Un : a₁ ∈ U n), from H₁,
have ha₁eq : h a₁ = f a₁,
from dif_pos H₁,
show a₂ ∈ Union U, from by_contradiction
(suppose a₂ ∉ Union U,
have ha₂eq : h a₂ = ginv a₂,
from dif_neg this,
have g (f a₁) = a₂, from calc
g (f a₁) = g (h a₁) : ha₁eq
... = g (h a₂) : heq
... = g (ginv a₂) : ha₂eq
... = a₂ : g_ginv_eq a₂A `a₂ ∉ Union U`,
have g (f a₁) ∈ g ' (f ' (U n)),
from mem_image_of_mem g (mem_image_of_mem f a₁Un),
have a₂ ∈ U (n + 1),
from `g (f a₁) = a₂` ▸ this,
have a₂ ∈ Union U,
from exists.intro _ this,
show false, from `a₂ ∉ Union U` `a₂ ∈ Union U`)
lemma h_inj : inj_on h A :=
take a₁ a₂,
suppose a₁ ∈ A,
suppose a₂ ∈ A,
assume heq : h a₁ = h a₂,
show a₁ = a₂, from
by_cases
(assume a₁UU : a₁ ∈ Union U,
have a₂UU : a₂ ∈ Union U,
from aux a₁UU `a₂ ∈ A` heq,
have f a₁ = f a₂, from calc
f a₁ = h a₁ : dif_pos a₁UU
... = h a₂ : heq
... = f a₂ : dif_pos a₂UU,
show a₁ = a₂, from
finj `a₁ ∈ A` `a₂ ∈ A` this)
(assume a₁nUU : a₁ ∉ Union U,
have a₂nUU : a₂ ∉ Union U,
from assume H, a₁nUU (aux H `a₁ ∈ A` heq⁻¹),
have eq₁ : g (ginv a₁) = a₁, from g_ginv_eq `a₁ ∈ A` a₁nUU,
have eq₂ : g (ginv a₂) = a₂, from g_ginv_eq `a₂ ∈ A` a₂nUU,
have ginv a₁ = ginv a₂, from calc
ginv a₁ = h a₁ : dif_neg a₁nUU
... = h a₂ : heq
... = ginv a₂ : dif_neg a₂nUU,
show a₁ = a₂, from calc
a₁ = g (ginv a₁) : eq₁ -- g_ginv_eq `a₁ ∈ A` a₁nUU
... = g (ginv a₂) : this
... = a₂ : eq₂) -- g_ginv_eq `a₂ ∈ A` a₂nUU)
/- h is surjective -/
lemma h_surj : surj_on h A B :=
take b,
suppose b ∈ B,
have g b ∈ A, from g_maps_to this,
by_cases
(suppose g b ∈ Union U,
obtain n (gbUn : g b ∈ U n), from this,
using ginj f_maps_to,
begin
cases n with n,
{have g b ∈ U 0, from gbUn,
have g b ∉ g ' B, from and.right this,
have g b ∈ g ' B, from mem_image_of_mem g `b ∈ B`,
show b ∈ h ' A, from absurd `g b ∈ g ' B` `g b ∉ g ' B`},
{have g b ∈ U (succ n), from gbUn,
have g b ∈ g ' (f ' (U n)), from this,
obtain b' [(b'fUn : b' ∈ f ' (U n)) (geq : g b' = g b)], from this,
obtain a [(aUn : a ∈ U n) (faeq : f a = b')], from b'fUn,
have g (f a) = g b, by rewrite [faeq, geq],
have a ∈ A, from U_subset_A n aUn,
have f a ∈ B, from f_maps_to this,
have f a = b, from ginj `f a ∈ B` `b ∈ B` `g (f a) = g b`,
have a ∈ Union U, from exists.intro n aUn,
have h a = f a, from dif_pos this,
show b ∈ h ' A, from mem_image `a ∈ A` (`h a = f a` ⬝ `f a = b`)}
end)
(suppose g b ∉ Union U,
have eq₁ : h (g b) = ginv (g b), from dif_neg this,
have eq₂ : ginv (g b) = b, from ginv_g_eq `b ∈ B`,
show b ∈ h ' A, from mem_image `g b ∈ A` (eq₁ ⬝ eq₂))
end
end schroeder_bernstein
namespace set
section
parameters {X Y : Type}
parameter {A : set X}
parameter {B : set Y}
parameter {f : X → Y}
parameter (f_maps_to : maps_to f A B)
parameter (finj : inj_on f A)
parameter {g : Y → X}
parameter (g_maps_to : maps_to g B A)
parameter (ginj : inj_on g B)
theorem schroeder_bernstein : ∃ h, bij_on h A B :=
by_cases
(assume H : ∀ b, b ∉ B,
have fsurj : surj_on f A B, from take b, suppose b ∈ B, absurd this !H,
exists.intro f (and.intro f_maps_to (and.intro finj fsurj)))
(assume H : ¬ ∀ b, b ∉ B,
have ∃ b, b ∈ B, from exists_of_not_forall_not H,
obtain b bB, from this,
let h := @schroeder_bernstein.h X Y A B f g b in
have h_maps_to : maps_to h A B, from schroeder_bernstein.h_maps_to f_maps_to bB,
have hinj : inj_on h A, from schroeder_bernstein.h_inj finj ginj, -- ginj,
have hsurj : surj_on h A B, from schroeder_bernstein.h_surj f_maps_to g_maps_to ginj,
exists.intro h (and.intro h_maps_to (and.intro hinj hsurj)))
end
end set