lean2/hott/types/prod.hlean

46 lines
1.2 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Ported from Coq HoTT
Theorems about products
-/
open eq equiv is_equiv is_trunc prod
variables {A A' B B' C D : Type}
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
namespace prod
-- prod.eta is already used for the eta rule for strict equality
protected definition eta (u : A × B) : (pr₁ u , pr₂ u) = u :=
by cases u; apply idp
definition pair_eq (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
by cases pa; cases pb; apply idp
definition prod_eq (H₁ : pr₁ u = pr₁ v) (H₂ : pr₂ u = pr₂ v) : u = v :=
begin
cases u with (a₁, b₁),
cases v with (a₂, b₂),
apply (transport _ (eta (a₁, b₁))),
apply (transport _ (eta (a₂, b₂))),
apply (pair_eq H₁ H₂),
end
/- Symmetry -/
definition is_equiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
adjointify flip
flip
(λu, destruct u (λb a, idp))
(λu, destruct u (λa b, idp))
definition prod_comm_equiv (A B : Type) : A × B ≃ B × A :=
equiv.mk flip _
-- is_trunc_prod is defined in sigma
end prod