lean2/library/data/int/order.lean

611 lines
31 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.int.order
Authors: Floris van Doorn, Jeremy Avigad
The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring
and transfer the results.
-/
import .basic algebra.ordered_ring
open nat
open decidable
open fake_simplifier
open int eq.ops
namespace int
private definition nonneg (a : ) : Prop := int.cases_on a (take n, true) (take n, false)
definition le (a b : ) : Prop := nonneg (sub b a)
definition lt (a b : ) : Prop := le (add a 1) b
infix - := int.sub
infix <= := int.le
infix ≤ := int.le
infix < := int.lt
local attribute nonneg [reducible]
private definition decidable_nonneg [instance] (a : ) : decidable (nonneg a) := int.cases_on a _ _
definition decidable_le [instance] (a b : ) : decidable (a ≤ b) := decidable_nonneg _
definition decidable_lt [instance] (a b : ) : decidable (a < b) := decidable_nonneg _
private theorem nonneg.elim {a : } : nonneg a → ∃n : , a = n :=
int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H)
private theorem nonneg_or_nonneg_neg (a : ) : nonneg a nonneg (-a) :=
int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial)
theorem le.intro {a b : } {n : } (H : a + n = b) : a ≤ b :=
have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹,
have H2 : nonneg n, from true.intro,
show nonneg (b - a), from H1⁻¹ ▸ H2
theorem le.elim {a b : } (H : a ≤ b) : ∃n : , a + n = b :=
obtain (n : ) (H1 : b - a = n), from nonneg.elim H,
exists.intro n (!add.comm ▸ iff.mp' !add_eq_iff_eq_add_neg (H1⁻¹))
theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.elim (nonneg_or_nonneg_neg (b - a))
(assume H, or.inl H)
(assume H : nonneg (-(b - a)),
have H0 : -(b - a) = a - b, from neg_sub b a,
have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step
or.inr H1)
theorem of_nat_le_of_nat {m n : } (H : #nat m ≤ n) : of_nat m ≤ of_nat n :=
obtain (k : ) (Hk : m + k = n), from nat.le.elim H,
le.intro (Hk ▸ of_nat_add_of_nat m k)
theorem le_of_of_nat_le_of_nat {m n : } (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) :=
obtain (k : ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H,
have H1 : m + k = n, from of_nat.inj ((of_nat_add_of_nat m k)⁻¹ ⬝ Hk),
nat.le.intro H1
theorem of_nat_le_of_nat_iff (m n : ) : of_nat m ≤ of_nat n ↔ m ≤ n :=
iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat
theorem lt_add_succ (a : ) (n : ) : a < a + succ n :=
le.intro (show a + 1 + n = a + succ n, from
calc
a + 1 + n = a + (1 + n) : add.assoc
... = a + (n + 1) : nat.add.comm
... = a + succ n : rfl)
theorem lt.intro {a b : } {n : } (H : a + succ n = b) : a < b :=
H ▸ lt_add_succ a n
theorem lt.elim {a b : } (H : a < b) : ∃n : , a + succ n = b :=
obtain (n : ) (Hn : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, from
calc
a + succ n = a + 1 + n : by simp
... = b : Hn,
exists.intro n H2
theorem of_nat_lt_of_nat_iff (n m : ) : of_nat n < of_nat m ↔ n < m :=
calc
of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl
... ↔ of_nat (succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl
... ↔ succ n ≤ m : of_nat_le_of_nat_iff
... ↔ n < m : iff.symm (lt_iff_succ_le _ _)
theorem lt_of_of_nat_lt_of_nat {m n : } (H : of_nat m < of_nat n) : #nat m < n :=
iff.mp !of_nat_lt_of_nat_iff H
theorem of_nat_lt_of_nat {m n : } (H : #nat m < n) : of_nat m < of_nat n :=
iff.mp' !of_nat_lt_of_nat_iff H
/- show that the integers form an ordered additive group -/
theorem le.refl (a : ) : a ≤ a :=
le.intro (add_zero a)
theorem le.trans {a b c : } (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
obtain (n : ) (Hn : a + n = b), from le.elim H1,
obtain (m : ) (Hm : b + m = c), from le.elim H2,
have H3 : a + of_nat (n + m) = c, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹}
... = a + n + m : (add.assoc a n m)⁻¹
... = b + m : {Hn}
... = c : Hm,
le.intro H3
theorem le.antisymm {a b : } (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
obtain (n : ) (Hn : a + n = b), from le.elim H1,
obtain (m : ) (Hm : b + m = a), from le.elim H2,
have H3 : a + of_nat (n + m) = a + 0, from
calc
a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹}
... = a + n + m : (add.assoc a n m)⁻¹
... = b + m : {Hn}
... = a : Hm
... = a + 0 : (add_zero a)⁻¹,
have H4 : of_nat (n + m) = of_nat 0, from add.left_cancel H3,
have H5 : n + m = 0, from of_nat.inj H4,
have H6 : n = 0, from nat.eq_zero_of_add_eq_zero_right H5,
show a = b, from
calc
a = a + of_nat 0 : (add_zero a)⁻¹
... = a + n : {H6⁻¹}
... = b : Hn
theorem lt.irrefl (a : ) : ¬ a < a :=
(assume H : a < a,
obtain (n : ) (Hn : a + succ n = a), from lt.elim H,
have H2 : a + succ n = a + 0, from
calc
a + succ n = a : Hn
... = a + 0 : by simp,
have H3 : succ n = 0, from add.left_cancel H2,
have H4 : succ n = 0, from of_nat.inj H3,
absurd H4 !succ_ne_zero)
theorem ne_of_lt {a b : } (H : a < b) : a ≠ b :=
(assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b))
theorem succ_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b := H
theorem lt_of_le_succ {a b : } (H : a + 1 ≤ b) : a < b := H
theorem le_of_lt {a b : } (H : a < b) : a ≤ b :=
obtain (n : ) (Hn : a + succ n = b), from lt.elim H,
le.intro Hn
theorem lt_iff_le_and_ne (a b : ) : a < b ↔ (a ≤ b ∧ a ≠ b) :=
iff.intro
(assume H, and.intro (le_of_lt H) (ne_of_lt H))
(assume H,
have H1 : a ≤ b, from and.elim_left H,
have H2 : a ≠ b, from and.elim_right H,
obtain (n : ) (Hn : a + n = b), from le.elim H1,
have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H3,
lt.intro (Hk ▸ Hn))
theorem le_iff_lt_or_eq (a b : ) : a ≤ b ↔ (a < b a = b) :=
iff.intro
(assume H,
by_cases
(assume H1 : a = b, or.inr H1)
(assume H1 : a ≠ b,
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)),
obtain (k : ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H2,
or.inl (lt.intro (Hk ▸ Hn))))
(assume H,
or.elim H
(assume H1, le_of_lt H1)
(assume H1, H1 ▸ !le.refl))
theorem lt_succ (a : ) : a < a + 1 :=
le.refl (a + 1)
theorem add_le_add_left {a b : } (H : a ≤ b) (c : ) : c + a ≤ c + b :=
obtain (n : ) (Hn : a + n = b), from le.elim H,
have H2 : c + a + n = c + b, from
calc
c + a + n = c + (a + n) : add.assoc c a n
... = c + b : {Hn},
le.intro H2
theorem mul_nonneg {a b : } (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b :=
obtain (n : ) (Hn : 0 + n = a), from le.elim Ha,
obtain (m : ) (Hm : 0 + m = b), from le.elim Hb,
le.intro
(eq.symm
(calc
a * b = (0 + n) * b : Hn
... = n * b : nat.zero_add
... = n * (0 + m) : {Hm⁻¹}
... = n * m : nat.zero_add
... = 0 + n * m : zero_add))
theorem mul_pos {a b : } (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b :=
obtain (n : ) (Hn : 0 + succ n = a), from lt.elim Ha,
obtain (m : ) (Hm : 0 + succ m = b), from lt.elim Hb,
lt.intro
(eq.symm
(calc
a * b = (0 + succ n) * b : Hn
... = succ n * b : nat.zero_add
... = succ n * (0 + succ m) : {Hm⁻¹}
... = succ n * succ m : nat.zero_add
... = of_nat (succ n * succ m) : of_nat_mul_of_nat
... = of_nat (succ n * m + succ n) : nat.mul_succ
... = of_nat (succ (succ n * m + n)) : nat.add_succ
... = 0 + succ (succ n * m + n) : zero_add))
section
open [classes] algebra
protected definition linear_ordered_comm_ring [instance] [reducible] :
algebra.linear_ordered_comm_ring int :=
⦃algebra.linear_ordered_comm_ring, int.integral_domain,
le := le,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
lt := lt,
lt_iff_le_ne := lt_iff_le_and_ne,
add_le_add_left := @add_le_add_left,
mul_nonneg := @mul_nonneg,
mul_pos := @mul_pos,
le_iff_lt_or_eq := le_iff_lt_or_eq,
le_total := le.total⦄
protected definition decidable_linear_ordered_comm_ring [instance] [reducible] :
algebra.decidable_linear_ordered_comm_ring int :=
⦃algebra.decidable_linear_ordered_comm_ring,
int.linear_ordered_comm_ring,
decidable_lt := decidable_lt⦄
end
/- instantiate ordered ring theorems to int -/
section port_algebra
definition ge [reducible] (a b : ) := algebra.has_le.ge a b
definition gt [reducible] (a b : ) := algebra.has_lt.gt a b
infix >= := int.ge
infix ≥ := int.ge
infix > := int.gt
definition decidable_ge [instance] (a b : ) : decidable (a ≥ b) :=
show decidable (b ≤ a), from _
definition decidable_gt [instance] (a b : ) : decidable (a > b) :=
show decidable (b < a), from _
theorem le_of_eq_of_le : ∀{a b c : }, a = b → b ≤ c → a ≤ c := @algebra.le_of_eq_of_le _ _
theorem le_of_le_of_eq : ∀{a b c : }, a ≤ b → b = c → a ≤ c := @algebra.le_of_le_of_eq _ _
theorem lt_of_eq_of_lt : ∀{a b c : }, a = b → b < c → a < c := @algebra.lt_of_eq_of_lt _ _
theorem lt_of_lt_of_eq : ∀{a b c : }, a < b → b = c → a < c := @algebra.lt_of_lt_of_eq _ _
calc_trans int.le_of_eq_of_le
calc_trans int.le_of_le_of_eq
calc_trans int.lt_of_eq_of_lt
calc_trans int.lt_of_lt_of_eq
theorem ge_of_eq_of_ge : ∀{a b c : }, a = b → b ≥ c → a ≥ c := @algebra.ge_of_eq_of_ge _ _
theorem ge_of_ge_of_eq : ∀{a b c : }, a ≥ b → b = c → a ≥ c := @algebra.ge_of_ge_of_eq _ _
theorem gt_of_eq_of_gt : ∀{a b c : }, a = b → b > c → a > c := @algebra.gt_of_eq_of_gt _ _
theorem gt_of_gt_of_eq : ∀{a b c : }, a > b → b = c → a > c := @algebra.gt_of_gt_of_eq _ _
theorem ge.trans: ∀{a b c : }, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _
theorem gt.trans: ∀{a b c : }, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _
theorem gt_of_gt_of_ge : ∀{a b c : }, a > b → b ≥ c → a > c := @algebra.gt_of_gt_of_ge _ _
theorem gt_of_ge_of_gt : ∀{a b c : }, a ≥ b → b > c → a > c := @algebra.gt_of_ge_of_gt _ _
calc_trans int.ge_of_eq_of_ge
calc_trans int.ge_of_ge_of_eq
calc_trans int.gt_of_eq_of_gt
calc_trans int.gt_of_gt_of_eq
theorem lt.asymm : ∀{a b : }, a < b → ¬ b < a := @algebra.lt.asymm _ _
theorem lt_of_le_of_ne : ∀{a b : }, a ≤ b → a ≠ b → a < b := @algebra.lt_of_le_of_ne _ _
theorem lt_of_lt_of_le : ∀{a b c : }, a < b → b ≤ c → a < c := @algebra.lt_of_lt_of_le _ _
theorem lt_of_le_of_lt : ∀{a b c : }, a ≤ b → b < c → a < c := @algebra.lt_of_le_of_lt _ _
theorem not_le_of_lt : ∀{a b : }, a < b → ¬ b ≤ a := @algebra.not_le_of_lt _ _
theorem not_lt_of_le : ∀{a b : }, a ≤ b → ¬ b < a := @algebra.not_lt_of_le _ _
theorem lt_or_eq_of_le : ∀{a b : }, a ≤ b → a < b a = b := @algebra.lt_or_eq_of_le _ _
theorem lt.trichotomy : ∀a b : , a < b a = b b < a := algebra.lt.trichotomy
theorem lt.by_cases : ∀{a b : } {P : Prop}, (a < b → P) → (a = b → P) → (b < a → P) → P :=
@algebra.lt.by_cases _ _
theorem le_of_not_lt : ∀{a b : }, ¬ a < b → b ≤ a := @algebra.le_of_not_lt _ _
theorem lt_of_not_le : ∀{a b : }, ¬ a ≤ b → b < a := @algebra.lt_of_not_le _ _
theorem lt_or_ge : ∀a b : , a < b a ≥ b := @algebra.lt_or_ge _ _
theorem le_or_gt : ∀a b : , a ≤ b a > b := @algebra.le_or_gt _ _
theorem lt_or_gt_of_ne : ∀{a b : }, a ≠ b → a < b a > b := @algebra.lt_or_gt_of_ne _ _
theorem add_le_add_right : ∀{a b : }, a ≤ b → ∀c : , a + c ≤ b + c :=
@algebra.add_le_add_right _ _
theorem add_le_add : ∀{a b c d : }, a ≤ b → c ≤ d → a + c ≤ b + d := @algebra.add_le_add _ _
theorem add_lt_add_left : ∀{a b : }, a < b → ∀c : , c + a < c + b :=
@algebra.add_lt_add_left _ _
theorem add_lt_add_right : ∀{a b : }, a < b → ∀c : , a + c < b + c :=
@algebra.add_lt_add_right _ _
theorem le_add_of_nonneg_right : ∀{a b : }, b ≥ 0 → a ≤ a + b :=
@algebra.le_add_of_nonneg_right _ _
theorem le_add_of_nonneg_left : ∀{a b : }, b ≥ 0 → a ≤ b + a :=
@algebra.le_add_of_nonneg_left _ _
theorem add_lt_add : ∀{a b c d : }, a < b → c < d → a + c < b + d := @algebra.add_lt_add _ _
theorem add_lt_add_of_le_of_lt : ∀{a b c d : }, a ≤ b → c < d → a + c < b + d :=
@algebra.add_lt_add_of_le_of_lt _ _
theorem add_lt_add_of_lt_of_le : ∀{a b c d : }, a < b → c ≤ d → a + c < b + d :=
@algebra.add_lt_add_of_lt_of_le _ _
theorem lt_add_of_pos_right : ∀{a b : }, b > 0 → a < a + b := @algebra.lt_add_of_pos_right _ _
theorem lt_add_of_pos_left : ∀{a b : }, b > 0 → a < b + a := @algebra.lt_add_of_pos_left _ _
theorem le_of_add_le_add_left : ∀{a b c : }, a + b ≤ a + c → b ≤ c :=
@algebra.le_of_add_le_add_left _ _
theorem le_of_add_le_add_right : ∀{a b c : }, a + b ≤ c + b → a ≤ c :=
@algebra.le_of_add_le_add_right _ _
theorem lt_of_add_lt_add_left : ∀{a b c : }, a + b < a + c → b < c :=
@algebra.lt_of_add_lt_add_left _ _
theorem lt_of_add_lt_add_right : ∀{a b c : }, a + b < c + b → a < c :=
@algebra.lt_of_add_lt_add_right _ _
theorem add_le_add_left_iff : ∀a b c : , a + b ≤ a + c ↔ b ≤ c := algebra.add_le_add_left_iff
theorem add_le_add_right_iff : ∀a b c : , a + b ≤ c + b ↔ a ≤ c := algebra.add_le_add_right_iff
theorem add_lt_add_left_iff : ∀a b c : , a + b < a + c ↔ b < c := algebra.add_lt_add_left_iff
theorem add_lt_add_right_iff : ∀a b c : , a + b < c + b ↔ a < c := algebra.add_lt_add_right_iff
theorem add_nonneg : ∀{a b : }, 0 ≤ a → 0 ≤ b → 0 ≤ a + b := @algebra.add_nonneg _ _
theorem add_pos : ∀{a b : }, 0 < a → 0 < b → 0 < a + b := @algebra.add_pos _ _
theorem add_pos_of_pos_of_nonneg : ∀{a b : }, 0 < a → 0 ≤ b → 0 < a + b :=
@algebra.add_pos_of_pos_of_nonneg _ _
theorem add_pos_of_nonneg_of_pos : ∀{a b : }, 0 ≤ a → 0 < b → 0 < a + b :=
@algebra.add_pos_of_nonneg_of_pos _ _
theorem add_nonpos : ∀{a b : }, a ≤ 0 → b ≤ 0 → a + b ≤ 0 :=
@algebra.add_nonpos _ _
theorem add_neg : ∀{a b : }, a < 0 → b < 0 → a + b < 0 :=
@algebra.add_neg _ _
theorem add_neg_of_neg_of_nonpos : ∀{a b : }, a < 0 → b ≤ 0 → a + b < 0 :=
@algebra.add_neg_of_neg_of_nonpos _ _
theorem add_neg_of_nonpos_of_neg : ∀{a b : }, a ≤ 0 → b < 0 → a + b < 0 :=
@algebra.add_neg_of_nonpos_of_neg _ _
theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg : ∀{a b : },
0 ≤ a → 0 ≤ b → a + b = 0 ↔ a = 0 ∧ b = 0 :=
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _
theorem le_add_of_nonneg_of_le : ∀{a b c : }, 0 ≤ a → b ≤ c → b ≤ a + c :=
@algebra.le_add_of_nonneg_of_le _ _
theorem le_add_of_le_of_nonneg : ∀{a b c : }, b ≤ c → 0 ≤ a → b ≤ c + a :=
@algebra.le_add_of_le_of_nonneg _ _
theorem lt_add_of_pos_of_le : ∀{a b c : }, 0 < a → b ≤ c → b < a + c :=
@algebra.lt_add_of_pos_of_le _ _
theorem lt_add_of_le_of_pos : ∀{a b c : }, b ≤ c → 0 < a → b < c + a :=
@algebra.lt_add_of_le_of_pos _ _
theorem add_le_of_nonpos_of_le : ∀{a b c : }, a ≤ 0 → b ≤ c → a + b ≤ c :=
@algebra.add_le_of_nonpos_of_le _ _
theorem add_le_of_le_of_nonpos : ∀{a b c : }, b ≤ c → a ≤ 0 → b + a ≤ c :=
@algebra.add_le_of_le_of_nonpos _ _
theorem add_lt_of_neg_of_le : ∀{a b c : }, a < 0 → b ≤ c → a + b < c :=
@algebra.add_lt_of_neg_of_le _ _
theorem add_lt_of_le_of_neg : ∀{a b c : }, b ≤ c → a < 0 → b + a < c :=
@algebra.add_lt_of_le_of_neg _ _
theorem lt_add_of_nonneg_of_lt : ∀{a b c : }, 0 ≤ a → b < c → b < a + c :=
@algebra.lt_add_of_nonneg_of_lt _ _
theorem lt_add_of_lt_of_nonneg : ∀{a b c : }, b < c → 0 ≤ a → b < c + a :=
@algebra.lt_add_of_lt_of_nonneg _ _
theorem lt_add_of_pos_of_lt : ∀{a b c : }, 0 < a → b < c → b < a + c :=
@algebra.lt_add_of_pos_of_lt _ _
theorem lt_add_of_lt_of_pos : ∀{a b c : }, b < c → 0 < a → b < c + a :=
@algebra.lt_add_of_lt_of_pos _ _
theorem add_lt_of_nonpos_of_lt : ∀{a b c : }, a ≤ 0 → b < c → a + b < c :=
@algebra.add_lt_of_nonpos_of_lt _ _
theorem add_lt_of_lt_of_nonpos : ∀{a b c : }, b < c → a ≤ 0 → b + a < c :=
@algebra.add_lt_of_lt_of_nonpos _ _
theorem add_lt_of_neg_of_lt : ∀{a b c : }, a < 0 → b < c → a + b < c :=
@algebra.add_lt_of_neg_of_lt _ _
theorem add_lt_of_lt_of_neg : ∀{a b c : }, b < c → a < 0 → b + a < c :=
@algebra.add_lt_of_lt_of_neg _ _
theorem neg_le_neg : ∀{a b : }, a ≤ b → -b ≤ -a := @algebra.neg_le_neg _ _
theorem le_of_neg_le_neg : ∀{a b : }, -b ≤ -a → a ≤ b := @algebra.le_of_neg_le_neg _ _
theorem neg_le_neg_iff_le : ∀a b : , -a ≤ -b ↔ b ≤ a := algebra.neg_le_neg_iff_le
theorem nonneg_of_neg_nonpos : ∀{a : }, -a ≤ 0 → 0 ≤ a := @algebra.nonneg_of_neg_nonpos _ _
theorem neg_nonpos_of_nonneg : ∀{a : }, 0 ≤ a → -a ≤ 0 := @algebra.neg_nonpos_of_nonneg _ _
theorem neg_nonpos_iff_nonneg : ∀a : , -a ≤ 0 ↔ 0 ≤ a := algebra.neg_nonpos_iff_nonneg
theorem nonpos_of_neg_nonneg : ∀{a : }, 0 ≤ -a → a ≤ 0 := @algebra.nonpos_of_neg_nonneg _ _
theorem neg_nonneg_of_nonpos : ∀{a : }, a ≤ 0 → 0 ≤ -a := @algebra.neg_nonneg_of_nonpos _ _
theorem neg_nonneg_iff_nonpos : ∀a : , 0 ≤ -a ↔ a ≤ 0 := algebra.neg_nonneg_iff_nonpos
theorem neg_lt_neg : ∀{a b : }, a < b → -b < -a := @algebra.neg_lt_neg _ _
theorem lt_of_neg_lt_neg : ∀{a b : }, -b < -a → a < b := @algebra.lt_of_neg_lt_neg _ _
theorem neg_lt_neg_iff_lt : ∀a b : , -a < -b ↔ b < a := algebra.neg_lt_neg_iff_lt
theorem pos_of_neg_neg : ∀{a : }, -a < 0 → 0 < a := @algebra.pos_of_neg_neg _ _
theorem neg_neg_of_pos : ∀{a : }, 0 < a → -a < 0 := @algebra.neg_neg_of_pos _ _
theorem neg_neg_iff_pos : ∀a : , -a < 0 ↔ 0 < a := algebra.neg_neg_iff_pos
theorem neg_of_neg_pos : ∀{a : }, 0 < -a → a < 0 := @algebra.neg_of_neg_pos _ _
theorem neg_pos_of_neg : ∀{a : }, a < 0 → 0 < -a := @algebra.neg_pos_of_neg _ _
theorem neg_pos_iff_neg : ∀a : , 0 < -a ↔ a < 0 := algebra.neg_pos_iff_neg
theorem le_neg_iff_le_neg : ∀a b : , a ≤ -b ↔ b ≤ -a := algebra.le_neg_iff_le_neg
theorem neg_le_iff_neg_le : ∀a b : , -a ≤ b ↔ -b ≤ a := algebra.neg_le_iff_neg_le
theorem lt_neg_iff_lt_neg : ∀a b : , a < -b ↔ b < -a := algebra.lt_neg_iff_lt_neg
theorem neg_lt_iff_neg_lt : ∀a b : , -a < b ↔ -b < a := algebra.neg_lt_iff_neg_lt
theorem sub_nonneg_iff_le : ∀a b : , 0 ≤ a - b ↔ b ≤ a := algebra.sub_nonneg_iff_le
theorem sub_nonpos_iff_le : ∀a b : , a - b ≤ 0 ↔ a ≤ b := algebra.sub_nonpos_iff_le
theorem sub_pos_iff_lt : ∀a b : , 0 < a - b ↔ b < a := algebra.sub_pos_iff_lt
theorem sub_neg_iff_lt : ∀a b : , a - b < 0 ↔ a < b := algebra.sub_neg_iff_lt
theorem add_le_iff_le_neg_add : ∀a b c : , a + b ≤ c ↔ b ≤ -a + c :=
algebra.add_le_iff_le_neg_add
theorem add_le_iff_le_sub_left : ∀a b c : , a + b ≤ c ↔ b ≤ c - a :=
algebra.add_le_iff_le_sub_left
theorem add_le_iff_le_sub_right : ∀a b c : , a + b ≤ c ↔ a ≤ c - b :=
algebra.add_le_iff_le_sub_right
theorem le_add_iff_neg_add_le : ∀a b c : , a ≤ b + c ↔ -b + a ≤ c :=
algebra.le_add_iff_neg_add_le
theorem le_add_iff_sub_left_le : ∀a b c : , a ≤ b + c ↔ a - b ≤ c :=
algebra.le_add_iff_sub_left_le
theorem le_add_iff_sub_right_le : ∀a b c : , a ≤ b + c ↔ a - c ≤ b :=
algebra.le_add_iff_sub_right_le
theorem add_lt_iff_lt_neg_add_left : ∀a b c : , a + b < c ↔ b < -a + c :=
algebra.add_lt_iff_lt_neg_add_left
theorem add_lt_iff_lt_neg_add_right : ∀a b c : , a + b < c ↔ a < -b + c :=
algebra.add_lt_iff_lt_neg_add_right
theorem add_lt_iff_lt_sub_left : ∀a b c : , a + b < c ↔ b < c - a :=
algebra.add_lt_iff_lt_sub_left
theorem add_lt_add_iff_lt_sub_right : ∀a b c : , a + b < c ↔ a < c - b :=
algebra.add_lt_add_iff_lt_sub_right
theorem lt_add_iff_neg_add_lt_left : ∀a b c : , a < b + c ↔ -b + a < c :=
algebra.lt_add_iff_neg_add_lt_left
theorem lt_add_iff_neg_add_lt_right : ∀a b c : , a < b + c ↔ -c + a < b :=
algebra.lt_add_iff_neg_add_lt_right
theorem lt_add_iff_sub_lt_left : ∀a b c : , a < b + c ↔ a - b < c :=
algebra.lt_add_iff_sub_lt_left
theorem lt_add_iff_sub_lt_right : ∀a b c : , a < b + c ↔ a - c < b :=
algebra.lt_add_iff_sub_lt_right
theorem le_iff_le_of_sub_eq_sub : ∀{a b c d : }, a - b = c - d → a ≤ b ↔ c ≤ d :=
@algebra.le_iff_le_of_sub_eq_sub _ _
theorem lt_iff_lt_of_sub_eq_sub : ∀{a b c d : }, a - b = c - d → a < b ↔ c < d :=
@algebra.lt_iff_lt_of_sub_eq_sub _ _
theorem sub_le_sub_left : ∀{a b : }, a ≤ b → ∀c : , c - b ≤ c - a :=
@algebra.sub_le_sub_left _ _
theorem sub_le_sub_right : ∀{a b : }, a ≤ b → ∀c : , a - c ≤ b - c :=
@algebra.sub_le_sub_right _ _
theorem sub_le_sub : ∀{a b c d : }, a ≤ b → c ≤ d → a - d ≤ b - c :=
@algebra.sub_le_sub _ _
theorem sub_lt_sub_left : ∀{a b : }, a < b → ∀c : , c - b < c - a :=
@algebra.sub_lt_sub_left _ _
theorem sub_lt_sub_right : ∀{a b : }, a < b → ∀c : , a - c < b - c :=
@algebra.sub_lt_sub_right _ _
theorem sub_lt_sub : ∀{a b c d : }, a < b → c < d → a - d < b - c :=
@algebra.sub_lt_sub _ _
theorem sub_lt_sub_of_le_of_lt : ∀{a b c d : }, a ≤ b → c < d → a - d < b - c :=
@algebra.sub_lt_sub_of_le_of_lt _ _
theorem sub_lt_sub_of_lt_of_le : ∀{a b c d : }, a < b → c ≤ d → a - d < b - c :=
@algebra.sub_lt_sub_of_lt_of_le _ _
theorem sub_le_self : ∀(a : ) {b : }, b ≥ 0 → a - b ≤ a := algebra.sub_le_self
theorem sub_lt_self : ∀(a : ) {b : }, b > 0 → a - b < a := algebra.sub_lt_self
theorem eq_zero_of_neg_eq : ∀{a : }, -a = a → a = 0 := @algebra.eq_zero_of_neg_eq _ _
definition abs : := algebra.abs
notation `|` a `|` := abs a
theorem abs_of_nonneg : ∀{a : }, a ≥ 0 → |a| = a := @algebra.abs_of_nonneg _ _
theorem abs_of_pos : ∀{a : }, a > 0 → |a| = a := @algebra.abs_of_pos _ _
theorem abs_of_neg : ∀{a : }, a < 0 → |a| = -a := @algebra.abs_of_neg _ _
theorem abs_zero : |0| = 0 := algebra.abs_zero
theorem abs_of_nonpos : ∀{a : }, a ≤ 0 → |a| = -a := @algebra.abs_of_nonpos _ _
theorem abs_neg : ∀a : , |-a| = |a| := algebra.abs_neg
theorem abs_nonneg : ∀a : , | a | ≥ 0 := algebra.abs_nonneg
theorem abs_abs : ∀a : , | |a| | = |a| := algebra.abs_abs
theorem le_abs_self : ∀a : , a ≤ |a| := algebra.le_abs_self
theorem neg_le_abs_self : ∀a : , -a ≤ |a| := algebra.neg_le_abs_self
theorem eq_zero_of_abs_eq_zero : ∀{a : }, |a| = 0 → a = 0 := @algebra.eq_zero_of_abs_eq_zero _ _
theorem abs_eq_zero_iff_eq_zero : ∀a : , |a| = 0 ↔ a = 0 := algebra.abs_eq_zero_iff_eq_zero
theorem abs_pos_of_pos : ∀{a : }, a > 0 → |a| > 0 := @algebra.abs_pos_of_pos _ _
theorem abs_pos_of_neg : ∀{a : }, a < 0 → |a| > 0 := @algebra.abs_pos_of_neg _ _
theorem abs_pos_of_ne_zero : ∀{a : }, a ≠ 0 → |a| > 0 := @algebra.abs_pos_of_ne_zero _ _
theorem abs_sub : ∀a b : , |a - b| = |b - a| := algebra.abs_sub
theorem abs.by_cases : ∀{P : → Prop}, ∀{a : }, P a → P (-a) → P (|a|) :=
@algebra.abs.by_cases _ _
theorem abs_le_of_le_of_neg_le : ∀{a b : }, a ≤ b → -a ≤ b → |a| ≤ b :=
@algebra.abs_le_of_le_of_neg_le _ _
theorem abs_lt_of_lt_of_neg_lt : ∀{a b : }, a < b → -a < b → |a| < b :=
@algebra.abs_lt_of_lt_of_neg_lt _ _
theorem abs_add_le_abs_add_abs : ∀a b : , |a + b| ≤ |a| + |b| :=
algebra.abs_add_le_abs_add_abs
theorem abs_sub_abs_le_abs_sub : ∀a b : , |a| - |b| ≤ |a - b| :=
algebra.abs_sub_abs_le_abs_sub
theorem mul_le_mul_of_nonneg_left : ∀{a b c : }, a ≤ b → 0 ≤ c → c * a ≤ c * b :=
@algebra.mul_le_mul_of_nonneg_left _ _
theorem mul_le_mul_of_nonneg_right : ∀{a b c : }, a ≤ b → 0 ≤ c → a * c ≤ b * c :=
@algebra.mul_le_mul_of_nonneg_right _ _
theorem mul_le_mul : ∀{a b c d : }, a ≤ c → b ≤ d → 0 ≤ b → 0 ≤ c → a * b ≤ c * d :=
@algebra.mul_le_mul _ _
theorem mul_nonpos_of_nonneg_of_nonpos : ∀{a b : }, a ≥ 0 → b ≤ 0 → a * b ≤ 0 :=
@algebra.mul_nonpos_of_nonneg_of_nonpos _ _
theorem mul_nonpos_of_nonpos_of_nonneg : ∀{a b : }, a ≤ 0 → b ≥ 0 → a * b ≤ 0 :=
@algebra.mul_nonpos_of_nonpos_of_nonneg _ _
theorem mul_lt_mul_of_pos_left : ∀{a b c : }, a < b → 0 < c → c * a < c * b :=
@algebra.mul_lt_mul_of_pos_left _ _
theorem mul_lt_mul_of_pos_right : ∀{a b c : }, a < b → 0 < c → a * c < b * c :=
@algebra.mul_lt_mul_of_pos_right _ _
theorem mul_lt_mul : ∀{a b c d : }, a < c → b ≤ d → 0 < b → 0 ≤ c → a * b < c * d :=
@algebra.mul_lt_mul _ _
theorem mul_neg_of_pos_of_neg : ∀{a b : }, a > 0 → b < 0 → a * b < 0 :=
@algebra.mul_neg_of_pos_of_neg _ _
theorem mul_neg_of_neg_of_pos : ∀{a b : }, a < 0 → b > 0 → a * b < 0 :=
@algebra.mul_neg_of_neg_of_pos _ _
theorem lt_of_mul_lt_mul_left : ∀{a b c : }, c * a < c * b → c ≥ 0 → a < b :=
@algebra.lt_of_mul_lt_mul_left _ _
theorem lt_of_mul_lt_mul_right : ∀{a b c : }, a * c < b * c → c ≥ 0 → a < b :=
@algebra.lt_of_mul_lt_mul_right _ _
theorem le_of_mul_le_mul_left : ∀{a b c : }, c * a ≤ c * b → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_left _ _
theorem le_of_mul_le_mul_right : ∀{a b c : }, a * c ≤ b * c → c > 0 → a ≤ b :=
@algebra.le_of_mul_le_mul_right _ _
theorem pos_of_mul_pos_left : ∀{a b : }, 0 < a * b → 0 ≤ a → 0 < b :=
@algebra.pos_of_mul_pos_left _ _
theorem pos_of_mul_pos_right : ∀{a b : }, 0 < a * b → 0 ≤ b → 0 < a :=
@algebra.pos_of_mul_pos_right _ _
theorem mul_le_mul_of_nonpos_left : ∀{a b c : }, b ≤ a → c ≤ 0 → c * a ≤ c * b :=
@algebra.mul_le_mul_of_nonpos_left _ _
theorem mul_le_mul_of_nonpos_right : ∀{a b c : }, b ≤ a → c ≤ 0 → a * c ≤ b * c :=
@algebra.mul_le_mul_of_nonpos_right _ _
theorem mul_nonneg_of_nonpos_of_nonpos : ∀{a b : }, a ≤ 0 → b ≤ 0 → 0 ≤ a * b :=
@algebra.mul_nonneg_of_nonpos_of_nonpos _ _
theorem mul_lt_mul_of_neg_left : ∀{a b c : }, b < a → c < 0 → c * a < c * b :=
@algebra.mul_lt_mul_of_neg_left _ _
theorem mul_lt_mul_of_neg_right : ∀{a b c : }, b < a → c < 0 → a * c < b * c :=
@algebra.mul_lt_mul_of_neg_right _ _
theorem mul_pos_of_neg_of_neg : ∀{a b : }, a < 0 → b < 0 → 0 < a * b :=
@algebra.mul_pos_of_neg_of_neg _ _
theorem mul_self_nonneg : ∀a : , a * a ≥ 0 := algebra.mul_self_nonneg
theorem zero_le_one : #int 0 ≤ 1 := trivial
theorem zero_lt_one : #int 0 < 1 := trivial
theorem pos_and_pos_or_neg_and_neg_of_mul_pos : ∀{a b : }, a * b > 0 →
(a > 0 ∧ b > 0) (a < 0 ∧ b < 0) := @algebra.pos_and_pos_or_neg_and_neg_of_mul_pos _ _
definition sign : ∀a : , := algebra.sign
theorem sign_of_neg : ∀{a : }, a < 0 → sign a = -1 := @algebra.sign_of_neg _ _
theorem sign_zero : sign 0 = 0 := algebra.sign_zero
theorem sign_of_pos : ∀{a : }, a > 0 → sign a = 1 := @algebra.sign_of_pos _ _
theorem sign_one : sign 1 = 1 := algebra.sign_one
theorem sign_neg_one : sign (-1) = -1 := algebra.sign_neg_one
theorem sign_sign : ∀a : , sign (sign a) = sign a := algebra.sign_sign
theorem pos_of_sign_eq_one : ∀{a : }, sign a = 1 → a > 0 := @algebra.pos_of_sign_eq_one _ _
theorem eq_zero_of_sign_eq_zero : ∀{a : }, sign a = 0 → a = 0 :=
@algebra.eq_zero_of_sign_eq_zero _ _
theorem neg_of_sign_eq_neg_one : ∀{a : }, sign a = -1 → a < 0 :=
@algebra.neg_of_sign_eq_neg_one _ _
theorem sign_neg : ∀a : , sign (-a) = -(sign a) := algebra.sign_neg
theorem sign_mul : ∀a b : , sign (a * b) = sign a * sign b := algebra.sign_mul
theorem abs_eq_sign_mul : ∀a : , |a| = sign a * a := algebra.abs_eq_sign_mul
theorem eq_sign_mul_abs : ∀a : , a = sign a * |a| := algebra.eq_sign_mul_abs
theorem abs_dvd_iff_dvd : ∀a b : , |a| | b ↔ a | b := algebra.abs_dvd_iff_dvd
theorem dvd_abs_iff : ∀a b : , a | |b| ↔ a | b := algebra.dvd_abs_iff
theorem abs_mul : ∀a b : , |a * b| = |a| * |b| := algebra.abs_mul
theorem abs_mul_self : ∀a : , |a| * |a| = a * a := algebra.abs_mul_self
end port_algebra
/- more facts specific to int -/
theorem nonneg_of_nat (n : ) : 0 ≤ of_nat n := trivial
theorem exists_eq_of_nat {a : } (H : 0 ≤ a) : ∃n : , a = of_nat n :=
obtain (n : ) (H1 : 0 + of_nat n = a), from le.elim H,
exists.intro n (!zero_add ▸ (H1⁻¹))
theorem exists_eq_neg_of_nat {a : } (H : a ≤ 0) : ∃n : , a = -(of_nat n) :=
have H2 : -a ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H,
obtain (n : ) (Hn : -a = of_nat n), from exists_eq_of_nat H2,
exists.intro n (eq_neg_of_eq_neg (Hn⁻¹))
theorem of_nat_nat_abs_of_nonneg {a : } (H : a ≥ 0) : of_nat (nat_abs a) = a :=
obtain (n : ) (Hn : a = of_nat n), from exists_eq_of_nat H,
Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n)
theorem of_nat_nat_abs_of_nonpos {a : } (H : a ≤ 0) : of_nat (nat_abs a) = -a :=
have H1 : (-a) ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H,
calc
of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg
... = -a : of_nat_nat_abs_of_nonneg H1
theorem of_nat_nat_abs (b : ) : nat_abs b = |b| :=
or.elim (le.total 0 b)
(assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹)
(assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹)
theorem lt_of_add_one_le {a b : } (H : a + 1 ≤ b) : a < b :=
obtain n (H1 : a + 1 + n = b), from le.elim H,
have H2 : a + succ n = b, by rewrite [-H1, add.assoc, (add.comm 1)],
lt.intro H2
theorem add_one_le_of_lt {a b : } (H : a < b) : a + 1 ≤ b :=
obtain n (H1 : a + succ n = b), from lt.elim H,
have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, (add.comm 1)],
le.intro H2
theorem of_nat_nonneg (n : ) : of_nat n ≥ 0 := trivial
theorem of_nat_pos {n : } (Hpos : #nat n > 0) : of_nat n > 0 :=
of_nat_lt_of_nat Hpos
theorem sign_of_succ (n : nat) : sign (succ n) = 1 :=
sign_of_pos (of_nat_pos !nat.succ_pos)
theorem exists_eq_neg_succ_of_nat {a : } : a < 0 → ∃m : , a = -[m +1] :=
int.cases_on a
(take m H, absurd (of_nat_nonneg m) (not_le_of_lt H))
(take m H, exists.intro m rfl)
end int