314 lines
13 KiB
Text
314 lines
13 KiB
Text
/-
|
||
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jacob Gross, Jeremy Avigad
|
||
|
||
Continuous functions.
|
||
-/
|
||
import theories.topology.basic algebra.category ..move
|
||
open algebra eq.ops set topology function category sigma.ops
|
||
|
||
namespace topology
|
||
|
||
/- continuity on a set -/
|
||
|
||
variables {X Y Z : Type} [topology X] [topology Y] [topology Z]
|
||
|
||
definition continuous_on (f : X → Y) (s : set X) : Prop :=
|
||
∀ ⦃t : set Y⦄, Open t → (∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s)
|
||
|
||
theorem exists_Open_of_continous_on {f : X → Y} {s : set X} {t : set Y} (Ot : Open t)
|
||
(H : continuous_on f s) :
|
||
∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s := H Ot
|
||
|
||
theorem Open_preimage_inter_of_continuous_on {f : X → Y} {s : set X} (Os : Open s)
|
||
(Hcont : continuous_on f s) {t : set Y} (Ot : Open t) :
|
||
Open (f '- t ∩ s) :=
|
||
obtain u [Ou Hu], from Hcont Ot,
|
||
by rewrite[-Hu]; exact Open_inter Ou Os
|
||
|
||
theorem continuous_on_of_forall_open {f : X → Y} {s : set X}
|
||
(H : ∀ t, Open t → Open (f '- t ∩ s)) :
|
||
continuous_on f s :=
|
||
take t, assume Ot,
|
||
have f '- t ∩ s ∩ s = f '- t ∩ s, by rewrite [inter_assoc, inter_self],
|
||
exists.intro (f '- t ∩ s) (and.intro (H t Ot) this)
|
||
|
||
theorem Open_preimage_of_continuous_on {f : X → Y} {s : set X} (Opens : Open s)
|
||
(contfs : continuous_on f s) {t : set Y} (Ot : Open t) (Hpre : f '- t ⊆ s) :
|
||
Open (f '- t) :=
|
||
have f '- t ∩ s = f '- t, from inter_eq_self_of_subset Hpre,
|
||
show Open (f '- t),
|
||
by rewrite -this; apply Open_preimage_inter_of_continuous_on Opens contfs Ot
|
||
|
||
theorem exists_closed_of_continuous_on {f : X → Y} {s : set X}
|
||
(contfs : continuous_on f s) {t : set Y} (clt : closed t) :
|
||
∃ u, closed u ∧ u ∩ s = f '- t ∩ s :=
|
||
obtain v [Ov (Hv : v ∩ s = f '- -t ∩ s)], from contfs clt,
|
||
have -v ∩ s = f '- t ∩ s,
|
||
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
|
||
show ∃ u, closed u ∧ u ∩ s = f '- t ∩ s,
|
||
from exists.intro (-v) (and.intro (closed_compl Ov) this)
|
||
|
||
theorem continuous_on_of_forall_closed' {f : X → Y} {s : set X}
|
||
(H : ∀ t, closed t → ∃ u, closed u ∧ u ∩ s = f '- t ∩ s) :
|
||
continuous_on f s :=
|
||
take t : set Y, assume Ot : Open t,
|
||
obtain (v : set X) [(clv : closed v) (Hv : v ∩ s = f '- (-t) ∩ s)], from H (-t) (closed_compl Ot),
|
||
have (-v) ∩ s = f '- t ∩ s,
|
||
from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]),
|
||
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
|
||
from exists.intro (-v) (and.intro clv this)
|
||
|
||
theorem continuous_on_of_forall_closed {f : X → Y} {s : set X} (closeds : closed s)
|
||
(H : ∀ B, closed B → closed (f '- B ∩ s)) : continuous_on f s :=
|
||
continuous_on_of_forall_closed'
|
||
(λ B HB, exists.intro _ (and.intro (H B HB) (by rewrite [inter_assoc, inter_self])))
|
||
|
||
theorem closed_preimage_inter_of_continuous_on {f : X → Y} {s : set Y} (cls : closed s)
|
||
{t : set X} (clt : closed t) (contft : continuous_on f t) :
|
||
closed (f '- s ∩ t) :=
|
||
obtain u [clu Hu], from exists_closed_of_continuous_on contft cls,
|
||
by rewrite [-Hu]; exact (closed_inter clu clt)
|
||
|
||
theorem continuous_on_subset {s t : set X} {f : X → Y} (Hs : continuous_on f s) (ts : t ⊆ s) :
|
||
continuous_on f t :=
|
||
take u, assume Ou,
|
||
obtain v [Ov Hv], from Hs Ou,
|
||
have v ∩ t = f '- u ∩ t, by rewrite [-inter_eq_self_of_subset_right ts, -*inter_assoc, Hv],
|
||
show ∃ v, Open v ∧ v ∩ t = f '- u ∩ t, from exists.intro v (and.intro Ov this)
|
||
|
||
theorem continous_on_union_of_closed {f : X → Y} {s t : set X} (cls : closed s) (clt : closed t)
|
||
(contsf : continuous_on f s) (conttf : continuous_on f t) :
|
||
continuous_on f (s ∪ t) :=
|
||
have ∀ u, closed u → closed (f '- u ∩ (s ∪ t)), from
|
||
begin
|
||
intro u clu,
|
||
rewrite [inter_distrib_left],
|
||
exact closed_union (closed_preimage_inter_of_continuous_on clu cls contsf)
|
||
(closed_preimage_inter_of_continuous_on clu clt conttf)
|
||
end,
|
||
show continuous_on f (s ∪ t),
|
||
from continuous_on_of_forall_closed (closed_union cls clt) this
|
||
|
||
theorem continuous_on_empty (f : X → Y) : continuous_on f ∅ :=
|
||
continuous_on_of_forall_open
|
||
(take B, assume OpenB, by rewrite[inter_empty]; apply Open_empty)
|
||
|
||
theorem continuous_on_union {f : X → Y} {s t : set X}
|
||
(Opens : Open s) (Opent : Open t) (contsf : continuous_on f s) (conttf : continuous_on f t) :
|
||
continuous_on f (s ∪ t) :=
|
||
continuous_on_of_forall_open
|
||
(take B, assume OpenB,
|
||
have Open (f '- B ∩ s), from Open_preimage_inter_of_continuous_on Opens contsf OpenB,
|
||
have Open (f '- B ∩ t), from Open_preimage_inter_of_continuous_on Opent conttf OpenB,
|
||
show Open (f '- B ∩ (s ∪ t)),
|
||
by rewrite [inter_distrib_left]; apply Open_union; assumption; assumption)
|
||
|
||
theorem continuous_on_id (s : set X) : continuous_on (@id X) s :=
|
||
λ B OpB, exists.intro B (and.intro OpB (by rewrite preimage_id))
|
||
|
||
theorem continuous_on_comp {s : set X} {f : X → Y} {g : Y → Z}
|
||
(Hf : continuous_on f s) (Hg : continuous_on g (f ' s)) : continuous_on (g ∘ f) s :=
|
||
take t, assume Ot,
|
||
obtain (u : set Y) [(Ou : Open u) (Hu : u ∩ f ' s = g '- t ∩ f ' s)], from Hg Ot,
|
||
obtain (v : set X) [(Ov : Open v) (Hv : v ∩ s = f '- u ∩ s)], from Hf Ou,
|
||
have s ⊆ f '- (f ' s), from subset_preimage_image s f,
|
||
have f '- (u ∩ f ' s) ∩ s = f '- (g '- t ∩ f ' s) ∩ s, by rewrite Hu,
|
||
have f '- u ∩ s = f '- (g '- t) ∩ s,
|
||
begin
|
||
revert this,
|
||
rewrite [*preimage_inter, *inter_assoc, *inter_eq_self_of_subset_right `s ⊆ f '- (f ' s)`],
|
||
intro H, exact H
|
||
end,
|
||
show ∃ v, Open v ∧ v ∩ s = (g ∘ f) '- t ∩ s,
|
||
from exists.intro v (and.intro Ov (eq.trans Hv this))
|
||
|
||
theorem continuous_on_comp' {s : set X} {t : set Y} {f : X → Y} {g : Y → Z}
|
||
(Hf : continuous_on f s) (Hg : continuous_on g t) (H : f ' s ⊆ t) : continuous_on (g ∘ f) s :=
|
||
continuous_on_comp Hf (continuous_on_subset Hg H)
|
||
|
||
section
|
||
open classical
|
||
|
||
theorem continuous_on_singleton (f : X → Y) (x : X) :
|
||
continuous_on f '{x} :=
|
||
take s, assume Ops,
|
||
if Hx : x ∈ f '- s then
|
||
have '{x} ⊆ f '- s, from singleton_subset_of_mem Hx,
|
||
exists.intro univ (and.intro Open_univ
|
||
(by rewrite [univ_inter, inter_eq_self_of_subset_right this]))
|
||
else
|
||
have f '- s ∩ '{x} = ∅,
|
||
from eq_empty_of_forall_not_mem
|
||
(take y, assume ymem,
|
||
obtain (Hy : y ∈ f '- s) (Hy' : y ∈ '{x}), from ymem,
|
||
have y = x, from eq_of_mem_singleton Hy',
|
||
show false, from Hx (by rewrite -this; apply Hy)),
|
||
exists.intro ∅ (and.intro Open_empty (by rewrite [this, empty_inter]))
|
||
|
||
theorem continuous_on_const (c : Y) (s : set X) :
|
||
continuous_on (λ x : X, c) s :=
|
||
take s, assume Ops,
|
||
if cs : c ∈ s then
|
||
have (λx, c) '- s = @univ X, from eq_univ_of_forall (take x, mem_preimage cs),
|
||
exists.intro univ (and.intro Open_univ (by rewrite this))
|
||
else
|
||
have (λx, c) '- s = (∅ : set X),
|
||
from eq_empty_of_forall_not_mem (take x, assume H, cs (mem_of_mem_preimage H)),
|
||
exists.intro ∅ (and.intro Open_empty (by rewrite this))
|
||
end
|
||
|
||
|
||
/- pointwise continuity on a set -/
|
||
|
||
definition continuous_at_on (f : X → Y) (x : X) (s : set X) : Prop :=
|
||
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ∩ s ⊆ f '- t
|
||
|
||
theorem continuous_at_on_of_continuous_on {f : X → Y} {s : set X}
|
||
(H : continuous_on f s) ⦃x : X⦄ (xs : x ∈ s) :
|
||
continuous_at_on f x s :=
|
||
take u, assume (Ou : Open u) (fxu : f x ∈ u),
|
||
obtain (t : set X) [(Ot : Open t) (Ht : t ∩ s = f '- u ∩ s)], from H Ou,
|
||
have x ∈ f '- u ∩ s, from and.intro fxu xs,
|
||
have x ∈ t, by rewrite [-Ht at this]; exact and.left this,
|
||
exists.intro t (and.intro Ot (and.intro this (by rewrite Ht; apply inter_subset_left)))
|
||
|
||
section
|
||
open classical
|
||
|
||
theorem continuous_on_of_forall_continuous_at_on {f : X → Y} {s : set X}
|
||
(H : ∀ x, continuous_at_on f x s) :
|
||
continuous_on f s :=
|
||
take t, assume Ot : Open t,
|
||
have H₁ : ∀₀ x ∈ f '- t, ∃ u', Open u' ∧ x ∈ u' ∧ u' ∩ s ⊆ f '- t,
|
||
from λ x xmem, H x Ot (mem_of_mem_preimage xmem),
|
||
let u := ⋃₀ {u' | ∃ x (Hx : x ∈ f '- t), u' = some (H₁ Hx) } in
|
||
have Open u, from Open_sUnion
|
||
(take u', assume Hu',
|
||
obtain x (Hx : x ∈ f '- t) (u'eq : u' = some (H₁ Hx)), from Hu',
|
||
show Open u', by rewrite u'eq; apply and.left (some_spec (H₁ Hx))),
|
||
have Hu₁ : u ∩ s ⊆ f '- t, from
|
||
take x, assume Hx,
|
||
obtain xu xs, from Hx,
|
||
obtain u' [[x' (Hx' : x' ∈ f '- t) (u'eq : u' = some (H₁ Hx'))] (xu' : x ∈ u')], from xu,
|
||
have u' ∩ s ⊆ f '- t, by rewrite u'eq; exact and.right (and.right (some_spec (H₁ Hx'))),
|
||
show x ∈ f '- t, from this (and.intro xu' xs),
|
||
have Hu₂ : f '- t ∩ s ⊆ u, from
|
||
take x, assume Hx : x ∈ f '- t ∩ s,
|
||
obtain xft xs, from Hx,
|
||
let u' := some (H₁ xft) in
|
||
have x ∈ u', from and.left (and.right (some_spec (H₁ xft))),
|
||
show x ∈ u, from exists.intro u' (and.intro (exists.intro x (exists.intro xft rfl)) this),
|
||
show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s,
|
||
from exists.intro u (and.intro `Open u` (inter_eq_inter_right Hu₁ Hu₂))
|
||
|
||
end
|
||
|
||
|
||
/- continuity -/
|
||
|
||
definition continuous (f : X → Y) : Prop := ∀ ⦃s : set Y⦄, Open s → Open (f '- s)
|
||
|
||
theorem continuous_of_continuous_on_univ {f : X → Y} (H : continuous_on f univ) : continuous f :=
|
||
λ s Os, by rewrite [-inter_univ]; exact Open_preimage_inter_of_continuous_on Open_univ H Os
|
||
|
||
theorem continuous_on_of_continuous {f : X → Y} (s : set X) (H : continuous f) :
|
||
continuous_on f s :=
|
||
take t, assume Ot, exists.intro (f '- t) (and.intro (H Ot) rfl)
|
||
|
||
theorem continuous_on_univ_of_continuous {f : X → Y} (H : continuous f) : continuous_on f univ :=
|
||
continuous_on_of_continuous univ H
|
||
|
||
theorem continuous_iff (f : X → Y) : continuous f ↔ continuous_on f univ :=
|
||
iff.intro continuous_on_univ_of_continuous continuous_of_continuous_on_univ
|
||
|
||
theorem Open_preimage_of_continuous {f : X → Y} (H : continuous f) ⦃s : set Y⦄ (Os : Open s) :
|
||
Open (f '- s) := H Os
|
||
|
||
theorem closed_preimage_of_continuous {f : X → Y} (H : continuous f) {s : set Y} (cls : closed s) :
|
||
closed (f '- s) :=
|
||
by rewrite [↑closed, -preimage_compl]; exact H cls
|
||
|
||
theorem continuous_id : continuous (@id X) :=
|
||
λ s Os, Os
|
||
|
||
theorem continuous_comp {f : X → Y} {g : Y → Z}
|
||
(Hf : continuous f) (Hg : continuous g) : continuous (g ∘ f) :=
|
||
λ s Os, Hf (Hg Os)
|
||
|
||
theorem continuous_const (c : Y) : continuous (λ x : X, c) :=
|
||
continuous_of_continuous_on_univ (continuous_on_const c univ)
|
||
|
||
|
||
/- continuity at a point -/
|
||
|
||
definition continuous_at' (f : X → Y) (x : X) : Prop :=
|
||
∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ⊆ f '- t
|
||
|
||
theorem continuous_at_of_continuous_at_on {f : X → Y} {x : X} {s : set X}
|
||
(Os : Open s) (xs : x ∈ s) (H : continuous_at_on f x s) :
|
||
continuous_at' f x :=
|
||
take t, assume Ot fxt,
|
||
obtain u Ou xu xssub, from H Ot fxt,
|
||
exists.intro (u ∩ s) (and.intro (Open_inter Ou Os)
|
||
(and.intro (and.intro xu xs) xssub))
|
||
|
||
theorem continuous_at_of_continuous_at_on_univ {f : X → Y} {x : X}
|
||
(H : continuous_at_on f x univ) :
|
||
continuous_at' f x :=
|
||
continuous_at_of_continuous_at_on Open_univ !mem_univ H
|
||
|
||
theorem continuous_at_on_univ_of_continuous_at {f : X → Y} {x : X}
|
||
(H : continuous_at' f x) :
|
||
continuous_at_on f x univ :=
|
||
take t, assume Ot fxt,
|
||
obtain u Ou xu usub, from H Ot fxt,
|
||
have u ∩ univ ⊆ f '- t, by rewrite inter_univ; apply usub,
|
||
exists.intro u (and.intro Ou (and.intro xu this))
|
||
|
||
theorem continuous_at_iff_continuous_at_on_univ (f : X → Y) (x : X) :
|
||
continuous_at' f x ↔ continuous_at_on f x univ :=
|
||
iff.intro continuous_at_on_univ_of_continuous_at continuous_at_of_continuous_at_on_univ
|
||
|
||
|
||
/- The Category TOP -/
|
||
|
||
section TOP
|
||
open subtype
|
||
|
||
private definition TOP_hom (A B : TopologicalSpace) : Type :=
|
||
{f : A → B | continuous f}
|
||
|
||
private definition TOP_ID {A : TopologicalSpace} : TOP_hom A A :=
|
||
subtype.tag (@id A) continuous_id
|
||
|
||
private definition TOP_comp ⦃ A B C : TopologicalSpace ⦄ (g : TOP_hom B C) (f : TOP_hom A B) :
|
||
TOP_hom A C :=
|
||
subtype.tag (elt_of g ∘ elt_of f)
|
||
(continuous_comp (subtype.has_property f) (subtype.has_property g))
|
||
|
||
private theorem TOP_assoc ⦃A B C D : TopologicalSpace⦄
|
||
(h : TOP_hom C D) (g : TOP_hom B C) (f : TOP_hom A B) :
|
||
TOP_comp h (TOP_comp g f) = TOP_comp (TOP_comp h g) f :=
|
||
subtype.eq rfl
|
||
|
||
private theorem id_left ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp TOP_ID f = f :=
|
||
subtype.eq rfl
|
||
|
||
private theorem id_right ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp f TOP_ID = f :=
|
||
subtype.eq rfl
|
||
|
||
definition TOP [reducible] [trans_instance] : category TopologicalSpace :=
|
||
⦃ category,
|
||
hom := TOP_hom,
|
||
comp := TOP_comp,
|
||
ID := @TOP_ID,
|
||
assoc := TOP_assoc,
|
||
id_left := id_left,
|
||
id_right := id_right
|
||
⦄
|
||
|
||
end TOP
|
||
|
||
end topology
|