175 lines
6.7 KiB
Text
175 lines
6.7 KiB
Text
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
-- Authors: Floris van Doorn, Jakob von Raumer
|
||
|
||
import .basic types.pi
|
||
|
||
open function precategory eq prod equiv is_equiv sigma sigma.ops is_trunc funext
|
||
open pi
|
||
|
||
structure functor (C D : Precategory) : Type :=
|
||
(obF : C → D)
|
||
(homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b))
|
||
(respect_id : Π (a : C), homF (ID a) = ID (obF a))
|
||
(respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b),
|
||
homF (g ∘ f) = homF g ∘ homF f)
|
||
|
||
namespace functor
|
||
|
||
infixl `⇒`:25 := functor
|
||
variables {C D E : Precategory}
|
||
|
||
attribute obF [coercion]
|
||
attribute homF [coercion]
|
||
|
||
-- The following lemmas will later be used to prove that the type of
|
||
-- precategories forms a precategory itself
|
||
protected definition compose (G : functor D E) (F : functor C D) : functor C E :=
|
||
functor.mk
|
||
(λ x, G (F x))
|
||
(λ a b f, G (F f))
|
||
(λ a, calc
|
||
G (F (ID a)) = G (ID (F a)) : {respect_id F a}
|
||
... = ID (G (F a)) : respect_id G (F a))
|
||
(λ a b c g f, calc
|
||
G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f
|
||
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f))
|
||
|
||
infixr `∘f`:60 := compose
|
||
|
||
definition functor_eq_mk'' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
|
||
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
|
||
(pF : F₁ = F₂) (pH : pF ▹ H₁ = H₂)
|
||
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
|
||
apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim
|
||
|
||
definition functor_eq_mk' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)}
|
||
{H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂)
|
||
(pF : F₁ ∼ F₂) (pH : Π(a b : C) (f : hom a b), eq_of_homotopy pF ▹ (H₁ a b f) = H₂ a b f)
|
||
: functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ :=
|
||
functor_eq_mk'' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF)
|
||
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf,
|
||
begin
|
||
apply concat, rotate_left 1, exact (pH c c' f),
|
||
apply concat, rotate_left 1,
|
||
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f),
|
||
apply (apD10' f),
|
||
apply concat, rotate_left 1,
|
||
exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c) c'),
|
||
apply (apD10' c'),
|
||
apply concat, rotate_left 1,
|
||
exact (pi_transport_constant (eq_of_homotopy pF) H₁ c),
|
||
apply idp
|
||
end))))
|
||
|
||
definition functor_eq_mk_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)}
|
||
{H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂)
|
||
(pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f)
|
||
: functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ :=
|
||
functor_eq_mk'' id₁ id₂ comp₁ comp₂ idp
|
||
(eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, pH c c' f))))
|
||
|
||
definition functor_eq_mk {F₁ F₂ : C ⇒ D} : Π(p : obF F₁ ∼ obF F₂),
|
||
(Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) (eq_of_homotopy p) (F₁ f) = F₂ f)
|
||
→ F₁ = F₂ :=
|
||
functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p q, !functor_eq_mk' q))
|
||
|
||
-- protected definition congr
|
||
-- {C : Precategory} {D : Precategory}
|
||
-- (F : C → D)
|
||
-- (foo2 : Π ⦃a b : C⦄, hom a b → hom (F a) (F b))
|
||
-- (foo3a foo3b : Π (a : C), foo2 (ID a) = ID (F a))
|
||
-- (foo4a foo4b : Π {a b c : C} (g : @hom C C b c) (f : @hom C C a b),
|
||
-- foo2 (g ∘ f) = foo2 g ∘ foo2 f)
|
||
-- (p3 : foo3a = foo3b) (p4 : @foo4a = @foo4b)
|
||
-- : functor.mk F foo2 foo3a @foo4a = functor.mk F foo2 foo3b @foo4b
|
||
-- :=
|
||
-- begin
|
||
-- apply (eq.rec_on p3), intros,
|
||
-- apply (eq.rec_on p4), intros,
|
||
-- apply idp,
|
||
-- end
|
||
|
||
|
||
protected definition assoc {A B C D : Precategory} (H : functor C D) (G : functor B C) (F : functor A B) :
|
||
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
|
||
!functor_eq_mk_constant (λa b f, idp)
|
||
|
||
protected definition id {C : Precategory} : functor C C :=
|
||
mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp)
|
||
|
||
protected definition ID (C : Precategory) : functor C C := id
|
||
|
||
protected definition id_left (F : functor C D) : id ∘f F = F :=
|
||
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
|
||
|
||
protected definition id_right (F : functor C D) : F ∘f id = F :=
|
||
functor.rec_on F (λF1 F2 F3 F4, !functor_eq_mk_constant (λa b f, idp))
|
||
|
||
set_option apply.class_instance false
|
||
-- "functor C D" is equivalent to a certain sigma type
|
||
set_option unifier.max_steps 38500
|
||
protected definition sigma_char :
|
||
(Σ (obF : C → D)
|
||
(homF : Π ⦃a b : C⦄, hom a b → hom (obF a) (obF b)),
|
||
(Π (a : C), homF (ID a) = ID (obF a)) ×
|
||
(Π {a b c : C} (g : hom b c) (f : hom a b),
|
||
homF (g ∘ f) = homF g ∘ homF f)) ≃ (functor C D) :=
|
||
begin
|
||
fapply equiv.MK,
|
||
{intro S, fapply functor.mk,
|
||
exact (S.1), exact (S.2.1),
|
||
exact (pr₁ S.2.2), exact (pr₂ S.2.2)},
|
||
{intro F,
|
||
cases F with (d1, d2, d3, d4),
|
||
exact (sigma.mk d1 (sigma.mk d2 (pair d3 (@d4))))},
|
||
{intro F,
|
||
cases F,
|
||
apply idp},
|
||
{intro S,
|
||
cases S with (d1, S2),
|
||
cases S2 with (d2, P1),
|
||
cases P1,
|
||
apply idp},
|
||
end
|
||
|
||
protected definition strict_cat_has_functor_hset
|
||
[HD : is_hset (objects D)] : is_hset (functor C D) :=
|
||
begin
|
||
apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv,
|
||
apply sigma_char,
|
||
apply is_trunc_sigma, apply is_trunc_pi, intros, exact HD, intro F,
|
||
apply is_trunc_sigma, apply is_trunc_pi, intro a,
|
||
{apply is_trunc_pi, intro b,
|
||
apply is_trunc_pi, intro c, apply !homH},
|
||
intro H, apply is_trunc_prod,
|
||
{apply is_trunc_pi, intro a,
|
||
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
|
||
{repeat (apply is_trunc_pi; intros),
|
||
apply is_trunc_eq, apply is_trunc_succ, apply !homH},
|
||
end
|
||
|
||
end functor
|
||
|
||
namespace precategory
|
||
open functor
|
||
|
||
definition precat_of_strict_precats : precategory (Σ (C : Precategory), is_hset (objects C)) :=
|
||
precategory.mk (λ a b, functor a.1 b.1)
|
||
(λ a b, @functor.strict_cat_has_functor_hset a.1 b.1 b.2)
|
||
(λ a b c g f, functor.compose g f)
|
||
(λ a, functor.id)
|
||
(λ a b c d h g f, !functor.assoc)
|
||
(λ a b f, !functor.id_left)
|
||
(λ a b f, !functor.id_right)
|
||
|
||
definition Precat_of_strict_cats := Mk precat_of_strict_precats
|
||
|
||
namespace ops
|
||
|
||
abbreviation PreCat := Precat_of_strict_cats
|
||
attribute precat_of_strict_precats [instance]
|
||
|
||
end ops
|
||
|
||
end precategory
|