48 lines
1.3 KiB
Text
48 lines
1.3 KiB
Text
/-
|
||
Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
||
Module: types.prod
|
||
Author: Floris van Doorn
|
||
|
||
Ported from Coq HoTT
|
||
Theorems about products
|
||
-/
|
||
|
||
open eq equiv is_equiv is_trunc prod prod.ops
|
||
|
||
variables {A A' B B' C D : Type}
|
||
{a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B}
|
||
|
||
namespace prod
|
||
|
||
-- prod.eta is already used for the eta rule for strict equality
|
||
protected definition eta (u : A × B) : (pr₁ u , pr₂ u) = u :=
|
||
by cases u; apply idp
|
||
|
||
definition pair_eq (pa : a = a') (pb : b = b') : (a , b) = (a' , b') :=
|
||
by cases pa; cases pb; apply idp
|
||
|
||
definition prod_eq (H₁ : pr₁ u = pr₁ v) (H₂ : pr₂ u = pr₂ v) : u = v :=
|
||
begin
|
||
cases u with a₁ b₁,
|
||
cases v with a₂ b₂,
|
||
apply transport _ (prod.eta (a₁, b₁)),
|
||
apply transport _ (prod.eta (a₂, b₂)),
|
||
apply pair_eq H₁ H₂,
|
||
end
|
||
|
||
/- Symmetry -/
|
||
|
||
definition is_equiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
|
||
adjointify flip
|
||
flip
|
||
(λu, destruct u (λb a, idp))
|
||
(λu, destruct u (λa b, idp))
|
||
|
||
definition prod_comm_equiv (A B : Type) : A × B ≃ B × A :=
|
||
equiv.mk flip _
|
||
|
||
-- is_trunc_prod is defined in sigma
|
||
|
||
end prod
|