lean2/tests/lean/elab1.lean.expected.out
Leonardo de Moura 08718e33dc refactor(builtin): only load the kernel and natural numbers by default
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2013-12-30 13:35:37 -08:00

287 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Set: pp::colors
Set: pp::unicode
Assumed: f
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
@f
with arguments:
?M::0
10
Assignment
≺ ?M::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
@f
with arguments:
?M::0
10
Assumed: g
Error (line: 7, pos: 8) invalid expression, it still contains metavariables after elaboration, metavariable: ?M::1, type:
Type
Assumed: h
Failed to solve
x : ?M::0, A : Type ⊢ ?M::0 ≺ A
(line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of
h
with arguments:
A
x
Assumed: my_eq
Failed to solve
A : Type, B : Type, a : ?M::0, b : ?M::1, C : Type ⊢ ?M::0[lift:0:3] ≺ C
(line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of
my_eq
with arguments:
C
a
b
Assumed: a
Assumed: b
Assumed: H
Failed to solve
⊢ ?M::0 ⇒ ?M::3 ∧ a ≺ b
Substitution
⊢ ?M::0 ⇒ ?M::1 ≺ b
(line: 20: pos: 18) Type of definition 't1' must be convertible to expected type.
Assignment
H1 : ?M::2 ⊢ ?M::3 ∧ a ≺ ?M::1
Substitution
H1 : ?M::2 ⊢ ?M::3 ∧ ?M::4 ≺ ?M::1
Destruct/Decompose
⊢ Π H1 : ?M::2, ?M::3 ∧ ?M::4 ≺ Π a : ?M::0, ?M::1
(line: 20: pos: 18) Type of argument 3 must be convertible to the expected type in the application of
@Discharge
with arguments:
?M::0
?M::1
λ H1 : ?M::2, Conj H1 (Conjunct1 H)
Assignment
H1 : ?M::2 ⊢ a ≺ ?M::4
Substitution
H1 : ?M::2 ⊢ ?M::5 ≺ ?M::4
(line: 20: pos: 37) Type of argument 4 must be convertible to the expected type in the application of
@Conj
with arguments:
?M::3
?M::4
H1
Conjunct1 H
Assignment
H1 : ?M::2 ⊢ a ≈ ?M::5
Destruct/Decompose
H1 : ?M::2 ⊢ a ∧ b ≺ ?M::5 ∧ ?M::6
(line: 20: pos: 45) Type of argument 3 must be convertible to the expected type in the application of
@Conjunct1
with arguments:
?M::5
?M::6
H
Failed to solve
⊢ b ≈ a
Substitution
⊢ b ≈ ?M::3
Destruct/Decompose
⊢ b == b ≺ ?M::3 == ?M::4
(line: 22: pos: 22) Type of argument 6 must be convertible to the expected type in the application of
@Trans
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Assignment
⊢ a ≈ ?M::3
Destruct/Decompose
⊢ a == a ≺ ?M::2 == ?M::3
(line: 22: pos: 22) Type of argument 5 must be convertible to the expected type in the application of
@Trans
with arguments:
?M::1
?M::2
?M::3
?M::4
Refl a
Refl b
Failed to solve
⊢ (?M::1 ≈ Type) ⊕ (?M::1 ≈ Bool)
Destruct/Decompose
⊢ ?M::1 ≺ Type
(line: 24: pos: 6) Type of argument 1 must be convertible to the expected type in the application of
@f
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
@f
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (Type 1) ≺ Type
Substitution
⊢ (Type 1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 1
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type 2) ≺ Type
Substitution
⊢ (Type 2) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 1)
Assumption 2
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type M+1) ≺ Type
Substitution
⊢ (Type M+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 3
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type U+1) ≺ Type
Substitution
⊢ (Type U+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 4
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
@f
with arguments:
?M::0
Bool
Bool
Failed to solve
⊢ (Type 1) ≺ Bool
Substitution
⊢ (Type 1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 6
Assignment
⊢ ?M::1 ≈ Bool
Assumption 5
Failed to solve
⊢ (Type 2) ≺ Bool
Substitution
⊢ (Type 2) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 1)
Assumption 7
Assignment
⊢ ?M::1 ≈ Bool
Assumption 5
Failed to solve
⊢ (Type M+1) ≺ Bool
Substitution
⊢ (Type M+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 8
Assignment
⊢ ?M::1 ≈ Bool
Assumption 5
Failed to solve
⊢ (Type U+1) ≺ Bool
Substitution
⊢ (Type U+1) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 9
Assignment
⊢ ?M::1 ≈ Bool
Assumption 5
Failed to solve
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
Substitution
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ ?M::5[lift:0:1]
Substitution
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ ?M::2[lift:0:2] ≺ ?M::5[lift:0:1]
Destruct/Decompose
a : Bool, b : Bool, H : ?M::2 ⊢ Π H_a : ?M::6, ?M::2[lift:0:2] ≺ Π a : ?M::3, ?M::5[lift:0:1]
(line: 27: pos: 21) Type of argument 5 must be convertible to the expected type in the application of
@DisjCases
with arguments:
?M::3
?M::4
?M::5
EM a
λ H_a : ?M::6, H
λ H_na : ?M::7, NotImp1 (MT H H_na)
Normalize assignment
?M::0
Assignment
a : Bool, b : Bool ⊢ ?M::2 ≈ ?M::0
Destruct/Decompose
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
@Discharge
with arguments:
?M::0
?M::1
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::0 ≈ (a ⇒ b) ⇒ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.
Assignment
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ a
Substitution
a : Bool, b : Bool, H : ?M::2 ⊢ ?M::5 ≺ ?M::1[lift:0:1]
Destruct/Decompose
a : Bool, b : Bool ⊢ Π H : ?M::2, ?M::5 ≺ Π a : ?M::0, ?M::1[lift:0:1]
(line: 27: pos: 4) Type of argument 3 must be convertible to the expected type in the application of
@Discharge
with arguments:
?M::0
?M::1
λ H : ?M::2, DisjCases (EM a) (λ H_a : ?M::6, H) (λ H_na : ?M::7, NotImp1 (MT H H_na))
Assignment
a : Bool, b : Bool ⊢ ?M::1 ≈ a
Destruct/Decompose
a : Bool, b : Bool ⊢ ?M::0 ⇒ ?M::1 ≺ ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
a : Bool ⊢ Π b : Bool, ?M::0 ⇒ ?M::1 ≺ Π b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
Destruct/Decompose
⊢ Π a b : Bool, ?M::0 ⇒ ?M::1 ≺ Π a b : Bool, ((a ⇒ b) ⇒ a) ⇒ a
(line: 26: pos: 16) Type of definition 'pierce' must be convertible to expected type.