lean2/src/library/blast/state.h
2015-11-08 19:18:40 -08:00

232 lines
9 KiB
C++

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "util/rb_map.h"
#include "kernel/expr.h"
#include "library/tactic/goal.h"
#include "library/blast/hypothesis.h"
#include "library/blast/branch.h"
namespace lean {
namespace blast {
class metavar_decl {
// A metavariable can be assigned to a value that contains references only to the assumptions
// that were available when the metavariable was defined.
hypothesis_idx_set m_assumptions;
expr m_type;
public:
metavar_decl() {}
metavar_decl(hypothesis_idx_set const & a, expr const & t):
m_assumptions(a), m_type(t) {}
/** \brief Return true iff \c h is in the context of the this metavar declaration */
bool contains_href(unsigned hidx) const { return m_assumptions.contains(hidx); }
bool contains_href(expr const & h) const { return contains_href(href_index(h)); }
expr const & get_type() const { return m_type; }
/** \brief Make sure the declaration context of this declaration is a subset of \c other.
\remark Return true iff the context has been modified. */
bool restrict_context_using(metavar_decl const & other);
hypothesis_idx_set get_assumptions() const { return m_assumptions; }
};
class proof_step_cell {
MK_LEAN_RC(); // Declare m_rc counter
void dealloc() { delete this; }
public:
virtual ~proof_step_cell() {}
/** \brief Every proof-step must provide a resolve method.
When the branch created by the proof-step is closed,
a proof pr is provided, and the proof-step can perform two operations
1- setup the next branch and return none_expr
2- finish and return a new proof */
virtual optional<expr> resolve(state & s, expr const & pr) = 0;
};
class proof_step {
proof_step_cell * m_ptr;
public:
proof_step():m_ptr(nullptr) {}
proof_step(proof_step_cell * c):m_ptr(c) { m_ptr->inc_ref(); }
proof_step(proof_step const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); }
proof_step(proof_step && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; }
~proof_step() { if (m_ptr) m_ptr->dec_ref(); }
proof_step & operator=(proof_step const & s) { LEAN_COPY_REF(s); }
proof_step & operator=(proof_step && s) { LEAN_MOVE_REF(s); }
optional<expr> resolve(state & s, expr const & pr) {
lean_assert(m_ptr);
return m_ptr->resolve(s, pr);
}
};
class state {
typedef metavar_idx_map<metavar_decl> metavar_decls;
typedef metavar_idx_map<expr> eassignment;
typedef metavar_idx_map<level> uassignment;
typedef hypothesis_idx_map<metavar_idx_set> fixed_by;
typedef list<proof_step> proof_steps;
unsigned m_next_uref_index; // index of the next universe metavariable
uassignment m_uassignment;
unsigned m_next_mref_index; // index of the next metavariable
metavar_decls m_metavar_decls;
eassignment m_eassignment;
branch m_main;
// In the following mapping, each entry (h -> {m_1 ... m_n}) means that hypothesis `h` cannot be cleared
// in any branch where the metavariables m_1 ... m_n have not been replaced with the values assigned to them.
// That is, to be able to clear `h` in a branch `B`, we first need to check whether it
// is contained in this mapping or not. If it is, we should check whether any of the
// metavariables `m_1` ... `m_n` occur in `B` (this is a relatively quick check since
// `B` contains an over-approximation of all meta-variables occuring in it (i.e., m_mvar_idxs).
// If this check fails, then we should replace any assigned `m_i` with its value, if the intersection is still
// non-empty, then we cannot clear `h`.
fixed_by m_fixed_by;
unsigned m_depth{0};
proof_steps m_proof_steps;
void add_fixed_by(unsigned hidx, unsigned midx);
unsigned add_metavar_decl(metavar_decl const & decl);
goal to_goal(branch const &) const;
#ifdef LEAN_DEBUG
bool check_hypothesis(expr const & e, branch const & b, unsigned hidx, hypothesis const & h) const;
bool check_hypothesis(branch const & b, unsigned hidx, hypothesis const & h) const;
bool check_target(branch const & b) const;
bool check_invariant(branch const &) const;
#endif
public:
state();
level mk_uref();
bool is_uref_assigned(level const & l) const {
lean_assert(is_uref(l));
return m_uassignment.contains(uref_index(l));
}
// u := l
void assign_uref(level const & u, level const & l) {
m_uassignment.insert(uref_index(u), l);
}
level const * get_uref_assignment(level const & l) const {
lean_assert(is_uref_assigned(l));
return m_uassignment.find(uref_index(l));
}
/** \brief Instantiate any assigned uref in \c l with its assignment.
\remark This is not a const method because it may normalize the assignment. */
level instantiate_urefs(level const & l);
/** \brief Create a new metavariable using the given type and context.
\pre ctx must be a subset of the hypotheses in the main branch. */
expr mk_metavar(hypothesis_idx_buffer const & ctx, expr const & type);
expr mk_metavar(hypothesis_idx_set const & ctx, expr const & type);
/** \brief Create a new metavariable using the given type.
The context of this metavariable will be all assumption hypotheses occurring in the main branch. */
expr mk_metavar(expr const & type);
/** \brief Make sure the metavariable declaration context of mref1 is a
subset of the metavariable declaration context of mref2. */
void restrict_mref_context_using(expr const & mref1, expr const & mref2);
bool is_mref_assigned(expr const & e) const {
lean_assert(is_mref(e));
return m_eassignment.contains(mref_index(e));
}
/** \brief Return true iff \c l contains an assigned uref */
bool has_assigned_uref(level const & l) const;
bool has_assigned_uref(levels const & ls) const;
expr const * get_mref_assignment(expr const & e) const {
lean_assert(is_mref(e));
return m_eassignment.find(mref_index(e));
}
// m := e
void assign_mref(expr const & m, expr const & e) {
m_eassignment.insert(mref_index(m), e);
}
/** \brief Return true if \c e contains an assigned mref or uref */
bool has_assigned_uref_mref(expr const & e) const;
/** \brief Instantiate any assigned mref in \c e with its assignment.
\remark This is not a const method because it may normalize the assignment. */
expr instantiate_urefs_mrefs(expr const & e);
/** \brief Add a new hypothesis to the main branch */
expr add_hypothesis(name const & n, expr const & type, expr const & value) {
return m_main.add_hypothesis(n, type, value);
}
branch & get_main_branch() { return m_main; }
branch const & get_main_branch() const { return m_main; }
/** \brief Add a new hypothesis to the main branch */
expr add_hypothesis(expr const & type, expr const & value) {
return m_main.add_hypothesis(type, value);
}
/** \brief Set target (aka conclusion, aka type of the goal, aka type of the term that must be synthesize in this branch)
of the main branch */
void set_target(expr const & type) {
return m_main.set_target(type);
}
metavar_decl const * get_metavar_decl(unsigned idx) const { return m_metavar_decls.find(idx); }
metavar_decl const * get_metavar_decl(expr const & e) const { return get_metavar_decl(mref_index(e)); }
/** \brief Convert main branch to a goal.
This is mainly used for pretty printing. However, in the future, we may use this capability
to invoke the tactic framework from the blast tactic. */
goal to_goal() const;
void display(environment const & env, io_state const & ios) const;
/** Auxiliary object for creating snapshots of the metavariable assignments.
\remark The snapshots are created (and restored) in constant time */
class assignment_snapshot {
state & m_state;
uassignment m_old_uassignment;
eassignment m_old_eassignment;
public:
assignment_snapshot(state & s):
m_state(s),
m_old_uassignment(s.m_uassignment),
m_old_eassignment(s.m_eassignment) {}
void restore() {
m_state.m_uassignment = m_old_uassignment;
m_state.m_eassignment = m_old_eassignment;
}
};
void push_proof_step(proof_step const & ps) {
m_depth++;
m_proof_steps = cons(ps, m_proof_steps);
}
bool has_proof_steps() const {
return static_cast<bool>(m_proof_steps);
}
proof_step top_proof_step() const {
return head(m_proof_steps);
}
void pop_proof_step() {
lean_assert(m_proof_steps);
m_depth--;
m_proof_steps = tail(m_proof_steps);
}
unsigned get_depth() const { return m_depth; }
#ifdef LEAN_DEBUG
bool check_invariant() const;
#endif
};
}}