lean2/hott/homotopy/imaginaroid.hlean
Floris van Doorn ddef24223b make pointed suspensions, wedges and spheres the default (in contrast to the unpointed ones), remove sphere_index
All HITs which automatically have a point are pointed without a 'p' in front. HITs which do not automatically have a point do still have a p (e.g. pushout/ppushout).

There were a lot of annoyances with spheres being indexed by N_{-1} with almost no extra generality. We now index the spheres by nat, making sphere 0 = pbool.
2017-07-20 15:02:09 +01:00

269 lines
8.3 KiB
Text

/-
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke
Cayley-Dickson construction via imaginaroids
-/
import algebra.group cubical.square types.pi .hopf
open eq eq.ops equiv susp hopf pointed
open [notation] sum
namespace imaginaroid
structure has_star [class] (A : Type) :=
(star : A → A)
reserve postfix `*` : (max+1)
postfix `*` := has_star.star
structure involutive_neg [class] (A : Type) extends has_neg A :=
(neg_neg : ∀a, neg (neg a) = a)
section
variable {A : Type}
variable [H : involutive_neg A]
include H
theorem neg_neg (a : A) : - -a = a := !involutive_neg.neg_neg
end
section
/- In this section we construct, when A has a negation,
a unit, a negation and a conjugation on susp A.
The unit 1 is north, so south is -1.
The negation must then swap north and south,
while the conjugation fixes the poles and negates on meridians.
-/
variable {A : Type}
definition has_one_susp [instance] : has_one (susp A) :=
⦃ has_one, one := north ⦄
variable [H : has_neg A]
include H
definition susp_neg : susp A → susp A :=
susp.elim south north (λa, (merid (neg a))⁻¹)
definition has_neg_susp [instance] : has_neg (susp A) :=
⦃ has_neg, neg := susp_neg⦄
definition susp_star : susp A → susp A :=
susp.elim north south (λa, merid (neg a))
definition has_star_susp [instance] : has_star (susp A) :=
⦃ has_star, star := susp_star ⦄
end
section
-- If negation on A is involutive, so is negation on susp A
variable {A : Type}
variable [H : involutive_neg A]
include H
definition susp_neg_neg (x : susp A) : - - x = x :=
begin
induction x with a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, rewrite ap_id,
rewrite (ap_compose' (λy, -y)),
krewrite susp.elim_merid, rewrite ap_inv,
krewrite susp.elim_merid, rewrite neg_neg,
rewrite inv_inv, apply hrefl }
end
definition involutive_neg_susp [instance] : involutive_neg (susp A) :=
⦃ involutive_neg, neg_neg := susp_neg_neg ⦄
definition susp_star_star (x : susp A) : x** = x :=
begin
induction x with a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, rewrite ap_id,
krewrite (ap_compose' (λy, y*)),
do 2 krewrite susp.elim_merid, rewrite neg_neg,
apply hrefl }
end
definition susp_neg_star (x : susp A) : (-x)* = -x* :=
begin
induction x with a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover,
krewrite [ap_compose' (λy, y*),ap_compose' (λy, -y) (λy, y*)],
do 3 krewrite susp.elim_merid, rewrite ap_inv, krewrite susp.elim_merid,
apply hrefl }
end
end
structure imaginaroid [class] (A : Type)
extends involutive_neg A, has_mul (susp A) :=
(one_mul : ∀x, mul one x = x)
(mul_one : ∀x, mul x one = x)
(mul_neg : ∀x y, mul x (@susp_neg A ⦃ has_neg, neg := neg ⦄ y) =
@susp_neg A ⦃ has_neg, neg := neg ⦄ (mul x y))
(norm : ∀x, mul x (@susp_star A ⦃ has_neg, neg := neg ⦄ x) = one)
(star_mul : ∀x y, @susp_star A ⦃ has_neg, neg := neg ⦄ (mul x y)
= mul (@susp_star A ⦃ has_neg, neg := neg ⦄ y)
(@susp_star A ⦃ has_neg, neg := neg ⦄ x))
section
variable {A : Type}
variable [H : imaginaroid A]
include H
theorem one_mul (x : susp A) : 1 * x = x := !imaginaroid.one_mul
theorem mul_one (x : susp A) : x * 1 = x := !imaginaroid.mul_one
theorem mul_neg (x y : susp A) : x * -y = -x * y := !imaginaroid.mul_neg
/- this should not be an instance because we typically construct
the h_space structure on susp A before defining
the imaginaroid structure on A -/
definition imaginaroid_h_space : h_space (susp A) :=
⦃ h_space, one := one, mul := mul, one_mul := one_mul, mul_one := mul_one ⦄
theorem norm (x : susp A) : x * x* = 1 := !imaginaroid.norm
theorem star_mul (x y : susp A) : (x * y)* = y* * x* := !imaginaroid.star_mul
theorem one_star : 1* = 1 :> susp A := idp
theorem neg_mul (x y : susp A) : (-x) * y = -x * y :=
calc
(-x) * y = ((-x) * y)** : susp_star_star
... = (y* * (-x)*)* : star_mul
... = (y* * -x*)* : susp_neg_star
... = (-y* * x*)* : mul_neg
... = -(y* * x*)* : susp_neg_star
... = -x** * y** : star_mul
... = -x * y** : susp_star_star
... = -x * y : susp_star_star
theorem norm' (x : susp A) : x* * x = 1 :=
calc
x* * x = (x* * x)** : susp_star_star
... = (x* * x**)* : star_mul
... = 1* : norm
... = 1 : one_star
end
/- Here we prove that if A has an associative imaginaroid structure,
then join (susp A) (susp A) gets an h_space structure -/
section
parameter A : Type
parameter [H : imaginaroid A]
parameter (assoc : Πa b c : susp A, (a * b) * c = a * b * c)
include A H assoc
open join
section lemmata
parameters (a b c d : susp A)
local abbreviation f : susp A → susp A :=
λx, a * c * (-x)
local abbreviation g : susp A → susp A :=
λy, c * y * b
definition lemma_1 : f (-1) = a * c :=
calc
a * c * (- -1) = a * c * 1 : idp
... = a * c : mul_one
definition lemma_2 : f (c* * a* * d * b*) = - d * b* :=
calc
a * c * (-c* * a* * d * b*)
= a * (-c * c* * a* * d * b*) : mul_neg
... = -a * c * c* * a* * d * b* : mul_neg
... = -(a * c) * c* * a* * d * b* : assoc
... = -((a * c) * c*) * a* * d * b* : assoc
... = -(a * c * c*) * a* * d * b* : assoc
... = -(a * 1) * a* * d * b* : norm
... = -a * a* * d * b* : mul_one
... = -(a * a*) * d * b* : assoc
... = -1 * d * b* : norm
... = -d * b* : one_mul
definition lemma_3 : g 1 = c * b :=
calc
c * 1 * b = c * b : one_mul
definition lemma_4 : g (c* * a* * d * b*) = a* * d :=
calc
c * (c* * a* * d * b*) * b
= (c * c* * a* * d * b*) * b : assoc
... = ((c * c*) * a* * d * b*) * b : assoc
... = (1 * a* * d * b*) * b : norm
... = (a* * d * b*) * b : one_mul
... = a* * (d * b*) * b : assoc
... = a* * d * b* * b : assoc
... = a* * d * 1 : norm'
... = a* * d : mul_one
end lemmata
/-
in the algebraic form, the Cayley-Dickson multiplication has:
(a,b) * (c,d) = (a * c - d * b*, a* * d + c * b)
here we do the spherical form.
-/
definition cd_mul (x y : join (susp A) (susp A)) : join (susp A) (susp A) :=
begin
induction x with a b a b,
{ induction y with c d c d,
{ exact inl (a * c) },
{ exact inr (a* * d) },
{ apply glue }
},
{ induction y with c d c d,
{ exact inr (c * b) },
{ exact inl (- d * b*) },
{ apply inverse, apply glue }
},
{ induction y with c d c d,
{ apply glue },
{ apply inverse, apply glue },
{ apply eq_pathover,
krewrite [join.elim_glue,join.elim_glue],
change join.diamond (a * c) (-d * b*) (c * b) (a* * d),
rewrite [-(lemma_1 a c),-(lemma_2 a b c d),
-(lemma_3 b c),-(lemma_4 a b c d)],
apply join.ap_diamond (f a c) (g b c),
generalize (c* * a* * d * b*), clear a b c d,
intro x, induction x with i,
{ apply join.vdiamond, reflexivity },
{ apply join.hdiamond, reflexivity },
{ apply join.twist_diamond } } }
end
definition cd_one_mul (x : join (susp A) (susp A)) : cd_mul (inl 1) x = x :=
begin
induction x with a b a b,
{ apply ap inl, apply one_mul },
{ apply ap inr, apply one_mul },
{ apply eq_pathover, rewrite ap_id, unfold cd_mul, krewrite join.elim_glue,
apply join.hsquare }
end
definition cd_mul_one (x : join (susp A) (susp A)) : cd_mul x (inl 1) = x :=
begin
induction x with a b a b,
{ apply ap inl, apply mul_one },
{ apply ap inr, apply one_mul },
{ apply eq_pathover, rewrite ap_id, unfold cd_mul, krewrite join.elim_glue,
apply join.hsquare }
end
definition cd_h_space [instance] : h_space (join (susp A) (susp A)) :=
⦃ h_space, one := inl one, mul := cd_mul,
one_mul := cd_one_mul, mul_one := cd_mul_one ⦄
end
end imaginaroid