282 lines
13 KiB
C++
282 lines
13 KiB
C++
/*
|
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Author: Leonardo de Moura
|
|
*/
|
|
#pragma once
|
|
#include "kernel/environment.h"
|
|
#include "kernel/type_checker.h"
|
|
|
|
namespace lean {
|
|
typedef std::unique_ptr<type_checker> type_checker_ptr;
|
|
/** \brief Unfold constant \c e or constant application (i.e., \c e is of the form (f ....),
|
|
where \c f is a constant */
|
|
optional<expr> unfold_term(environment const & env, expr const & e);
|
|
/** \brief If \c e is of the form <tt>(f a_1 ... a_n)</tt>, where \c f is
|
|
a non-opaque definition, then unfold \c f, and beta reduce.
|
|
Otherwise, return none.
|
|
*/
|
|
optional<expr> unfold_app(environment const & env, expr const & e);
|
|
|
|
/** \brief Reduce (if possible) universe level by 1.
|
|
\pre is_not_zero(l)
|
|
*/
|
|
optional<level> dec_level(level const & l);
|
|
|
|
/** \brief Return true iff \c env has been configured with an impredicative and proof irrelevant Prop. */
|
|
bool is_standard(environment const & env);
|
|
|
|
|
|
/** Return true if \c e can be normalized into a Pi type,
|
|
If the result is true, then \c e and \c cs are updated.
|
|
*/
|
|
bool is_norm_pi(type_checker & tc, expr & e, constraint_seq & cs);
|
|
|
|
bool has_poly_unit_decls(environment const & env);
|
|
bool has_eq_decls(environment const & env);
|
|
bool has_heq_decls(environment const & env);
|
|
bool has_prod_decls(environment const & env);
|
|
bool has_lift_decls(environment const & env);
|
|
/** \brief Return true iff \c n is the name of a recursive datatype in \c env.
|
|
That is, it must be an inductive datatype AND contain a recursive constructor.
|
|
|
|
\remark Records are inductive datatypes, but they are not recursive.
|
|
|
|
\remark For mutually indutive datatypes, \c n is considered recursive
|
|
if there is a constructor taking \c n.
|
|
*/
|
|
bool is_recursive_datatype(environment const & env, name const & n);
|
|
|
|
/** \brief Return true if \c n is a recursive *and* reflexive datatype.
|
|
|
|
We say an inductive type T is reflexive if it contains at least one constructor that
|
|
takes as an argument a function returning T.
|
|
*/
|
|
bool is_reflexive_datatype(type_checker & tc, name const & n);
|
|
|
|
/** \brief Return true iff \c n is an inductive predicate, i.e., an inductive datatype that is in Prop.
|
|
|
|
\remark If \c env does not have Prop (i.e., Type.{0} is not impredicative), then this method always return false.
|
|
*/
|
|
bool is_inductive_predicate(environment const & env, name const & n);
|
|
|
|
/** \brief Store in \c result the introduction rules of the given inductive datatype.
|
|
\remark this procedure does nothing if \c n is not an inductive datatype.
|
|
*/
|
|
void get_intro_rule_names(environment const & env, name const & n, buffer<name> & result);
|
|
|
|
/** \brief If \c e is a constructor application, then return the name of the constructor.
|
|
Otherwise, return none.
|
|
*/
|
|
optional<name> is_constructor_app(environment const & env, expr const & e);
|
|
|
|
/** \brief If \c e is a constructor application, or a definition that wraps a
|
|
constructor application, then return the name of the constructor.
|
|
Otherwise, return none.
|
|
*/
|
|
optional<name> is_constructor_app_ext(environment const & env, expr const & e);
|
|
|
|
/** \brief "Consume" Pi-type \c type. This procedure creates local constants based on the domain of \c type
|
|
and store them in telescope. If \c binfo is provided, then the local constants are annoted with the given
|
|
binder_info, otherwise the procedure uses the one attached in the domain.
|
|
The procedure returns the "body" of type.
|
|
*/
|
|
expr to_telescope(name_generator & ngen, expr const & type, buffer<expr> & telescope,
|
|
optional<binder_info> const & binfo = optional<binder_info>());
|
|
/** \brief Similar to previous procedure, but puts \c type in whnf */
|
|
expr to_telescope(type_checker & tc, expr type, buffer<expr> & telescope,
|
|
optional<binder_info> const & binfo = optional<binder_info>());
|
|
/** \brief Similar to previous procedure, but also accumulates constraints generated while
|
|
normalizing type.
|
|
|
|
\remark Constraints are generated only if \c type constains metavariables.
|
|
*/
|
|
expr to_telescope(type_checker & tc, expr type, buffer<expr> & telescope, optional<binder_info> const & binfo,
|
|
constraint_seq & cs);
|
|
|
|
/** \brief "Consume" fun/lambda. This procedure creates local constants based on the arguments of \c e
|
|
and store them in telescope. If \c binfo is provided, then the local constants are annoted with the given
|
|
binder_info, otherwise the procedure uses the one attached to the arguments.
|
|
The procedure returns the "body" of function.
|
|
*/
|
|
expr fun_to_telescope(name_generator & ngen, expr const & e, buffer<expr> & telescope, optional<binder_info> const & binfo);
|
|
|
|
/** \brief Return the universe where inductive datatype resides
|
|
\pre \c ind_type is of the form <tt>Pi (a_1 : A_1) (a_2 : A_2[a_1]) ..., Type.{lvl}</tt>
|
|
*/
|
|
level get_datatype_level(expr ind_type);
|
|
|
|
expr instantiate_univ_param (expr const & e, name const & p, level const & l);
|
|
|
|
expr mk_true();
|
|
expr mk_true_intro();
|
|
bool is_and(expr const & e, expr & arg1, expr & arg2);
|
|
expr mk_and(expr const & a, expr const & b);
|
|
expr mk_and_intro(type_checker & tc, expr const & Ha, expr const & Hb);
|
|
expr mk_and_elim_left(type_checker & tc, expr const & H);
|
|
expr mk_and_elim_right(type_checker & tc, expr const & H);
|
|
|
|
expr mk_poly_unit(level const & l);
|
|
expr mk_poly_unit_mk(level const & l);
|
|
expr mk_prod(type_checker & tc, expr const & A, expr const & B);
|
|
expr mk_pair(type_checker & tc, expr const & a, expr const & b);
|
|
expr mk_pr1(type_checker & tc, expr const & p);
|
|
expr mk_pr2(type_checker & tc, expr const & p);
|
|
|
|
expr mk_unit(level const & l, bool prop);
|
|
expr mk_unit_mk(level const & l, bool prop);
|
|
expr mk_prod(type_checker & tc, expr const & a, expr const & b, bool prop);
|
|
expr mk_pair(type_checker & tc, expr const & a, expr const & b, bool prop);
|
|
expr mk_pr1(type_checker & tc, expr const & p, bool prop);
|
|
expr mk_pr2(type_checker & tc, expr const & p, bool prop);
|
|
|
|
expr mk_false();
|
|
expr mk_empty();
|
|
/** \brief Return false (in standard mode) and empty (in HoTT) mode */
|
|
expr mk_false(environment const & env);
|
|
|
|
bool is_false(expr const & e);
|
|
bool is_empty(expr const & e);
|
|
/** \brief Return true iff \c e is false (in standard mode) or empty (in HoTT) mode */
|
|
bool is_false(environment const & env, expr const & e);
|
|
/** \brief Return an element of type t given an element \c f : false (in standard mode) and empty (in HoTT) mode */
|
|
expr mk_false_rec(type_checker & tc, expr const & f, expr const & t);
|
|
|
|
bool is_or(expr const & e);
|
|
bool is_or(expr const & e, expr & A, expr & B);
|
|
|
|
/** \brief Return true if \c e is of the form <tt>(not arg)</tt>, and store \c arg in \c a.
|
|
Return false otherwise */
|
|
bool is_not(environment const & env, expr const & e, expr & a);
|
|
expr mk_not(type_checker & tc, expr const & e);
|
|
|
|
/** \brief Create the term <tt>absurd e not_e : t</tt>. */
|
|
expr mk_absurd(type_checker & tc, expr const & t, expr const & e, expr const & not_e);
|
|
|
|
expr mk_eq(type_checker & tc, expr const & lhs, expr const & rhs);
|
|
expr mk_refl(type_checker & tc, expr const & a);
|
|
expr mk_symm(type_checker & tc, expr const & H);
|
|
expr mk_trans(type_checker & tc, expr const & H1, expr const & H2);
|
|
expr mk_subst(type_checker & tc, expr const & motive, expr const & x, expr const & y, expr const & xeqy, expr const & h);
|
|
expr mk_subst(type_checker & tc, expr const & motive, expr const & xeqy, expr const & h);
|
|
/** \brief Create an proof for x = y using subsingleton.elim (in standard mode) and is_trunc.is_hprop.elim (in HoTT mode) */
|
|
expr mk_subsingleton_elim(type_checker & tc, expr const & h, expr const & x, expr const & y);
|
|
|
|
/** \brief Return true iff \c e is a term of the form (eq.rec ....) */
|
|
bool is_eq_rec_core(expr const & e);
|
|
/** \brief Return true iff \c e is a term of the form (eq.rec ....) in the standard library,
|
|
and (eq.nrec ...) in the HoTT library. */
|
|
bool is_eq_rec(environment const & env, expr const & e);
|
|
/** \brief Return true iff \c e is a term of the form (eq.drec ....) in the standard library,
|
|
and (eq.rec ...) in the HoTT library. */
|
|
bool is_eq_drec(environment const & env, expr const & e);
|
|
|
|
bool is_eq(expr const & e);
|
|
bool is_eq(expr const & e, expr & lhs, expr & rhs);
|
|
/** \brief Return true iff \c e is of the form (eq A a a) */
|
|
bool is_eq_a_a(expr const & e);
|
|
/** \brief Return true iff \c e is of the form (eq A a a') where \c a and \c a' are definitionally equal */
|
|
bool is_eq_a_a(type_checker & tc, expr const & e);
|
|
|
|
bool is_heq(expr const & e);
|
|
bool is_heq(expr const & e, expr & A, expr & lhs, expr & B, expr & rhs);
|
|
|
|
bool is_ite(expr const & e, expr & c, expr & H, expr & A, expr & t, expr & f);
|
|
|
|
bool is_iff(expr const & e);
|
|
bool is_iff(expr const & e, expr & lhs, expr & rhs);
|
|
expr mk_iff(expr const & lhs, expr const & rhs);
|
|
expr mk_iff_refl(expr const & a);
|
|
/** \brief Given <tt>iff_pr : iff_term</tt>, where \c iff_term is of the form <tt>l <-> r</tt>,
|
|
return the term <tt>propext l r iff_pr</tt>
|
|
*/
|
|
expr apply_propext(expr const & iff_pr, expr const & iff_term);
|
|
|
|
/** \brief If in HoTT mode, apply lift.down.
|
|
The no_confusion constructions uses lifts in the proof relevant version (aka HoTT mode).
|
|
We must apply lift.down to eliminate the auxiliary lift.
|
|
*/
|
|
optional<expr> lift_down_if_hott(type_checker & tc, expr const & v);
|
|
|
|
/** \brief Create a telescope equality for HoTT library.
|
|
This procedure assumes eq supports dependent elimination.
|
|
For HoTT, we can't use heterogeneous equality.
|
|
*/
|
|
void mk_telescopic_eq(type_checker & tc, buffer<expr> const & t, buffer<expr> const & s, buffer<expr> & eqs);
|
|
void mk_telescopic_eq(type_checker & tc, buffer<expr> const & t, buffer<expr> & eqs);
|
|
|
|
level mk_max(levels const & ls);
|
|
|
|
expr mk_sigma_mk(type_checker & tc, buffer<expr> const & ts, buffer<expr> const & as, constraint_seq & cs);
|
|
|
|
/** \brief Return true iff \c e is of the form (@option.none A), and update \c A */
|
|
bool is_none(expr const & e, expr & A);
|
|
/** \brief Return true iff \c e is of the form (@option.some A a), and update \c A and \c a */
|
|
bool is_some(expr const & e, expr & A, expr & a);
|
|
|
|
enum class implicit_infer_kind { Implicit, RelaxedImplicit, None };
|
|
|
|
/** \brief Infer implicit parameter annotations for the first \c nparams using mode
|
|
specified by \c k.
|
|
*/
|
|
expr infer_implicit_params(expr const & type, unsigned nparams, implicit_infer_kind k);
|
|
|
|
/** \brief Similar to has_expr_metavar, but ignores metavariables occurring in the type
|
|
of local constants */
|
|
bool has_expr_metavar_relaxed(expr const & e);
|
|
|
|
/** \brief Instantiate metavariables occurring in the expressions nested in \c c.
|
|
|
|
\remark The justification associated with each assignment are *not* propagaged.
|
|
We assume this is not a problem since we only used this procedure when connecting the
|
|
elaborator with the tactic framework. */
|
|
constraint instantiate_metavars(constraint const & c, substitution & s);
|
|
|
|
|
|
/** \brief Check whether the given term is type correct or not, undefined universe levels are ignored,
|
|
and untrusted macros are unfolded before performing the test.
|
|
|
|
These procedures are useful for checking whether intermediate results produced by
|
|
tactics and automation are type correct.
|
|
*/
|
|
void check_term(type_checker & tc, expr const & e);
|
|
void check_term(environment const & env, expr const & e);
|
|
|
|
/** \brief Return a justification for \c v_type being definitionally equal to \c t,
|
|
<tt> v : v_type</tt>, the expressiong \c src is used to extract position information.
|
|
*/
|
|
format pp_type_mismatch(formatter const & fmt, expr const & v, expr const & v_type, expr const & t);
|
|
justification mk_type_mismatch_jst(expr const & v, expr const & v_type, expr const & t, expr const & src);
|
|
inline justification mk_type_mismatch_jst(expr const & v, expr const & v_type, expr const & t) {
|
|
return mk_type_mismatch_jst(v, v_type, t, v);
|
|
}
|
|
|
|
/** \brief Create a type checker and normalizer that treats any constant named \c n as opaque when pred(n) is true.
|
|
Projections are reduced using the projection converter */
|
|
type_checker_ptr mk_type_checker(environment const & env, name_generator && ngen, name_predicate const & pred);
|
|
/** \brief Create a type checker and normalizer that treats any constant named \c n as opaque when pred(n) is true.
|
|
No special support for projections is used */
|
|
type_checker_ptr mk_simple_type_checker(environment const & env, name_generator && ngen, name_predicate const & pred);
|
|
/**
|
|
\brief Generate the format object for <tt>hyps |- conclusion</tt>.
|
|
The given substitution is applied to all elements.
|
|
*/
|
|
format format_goal(formatter const & fmt, buffer<expr> const & hyps, expr const & conclusion, substitution const & s);
|
|
|
|
/** \brief Given a metavariable application (?m l_1 ... l_n), apply \c s to the types of
|
|
?m and local constants l_i
|
|
Return the updated expression and a justification for all substitutions.
|
|
*/
|
|
pair<expr, justification> update_meta(expr const & meta, substitution s);
|
|
|
|
/** \brief Instantiate metavariable application \c meta (?M ...) using \c subst */
|
|
expr instantiate_meta(expr const & meta, substitution & subst);
|
|
|
|
/** \brief Return a 'failed to synthesize placholder' justification for the given
|
|
metavariable application \c m of the form (?m l_1 ... l_k) */
|
|
justification mk_failed_to_synthesize_jst(environment const & env, expr const & m);
|
|
|
|
void initialize_library_util();
|
|
void finalize_library_util();
|
|
}
|