lean2/library/algebra/order.lean

315 lines
11 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.order
Author: Jeremy Avigad
Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also
consider structures with both, where the two are related by
x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair)
x ≤ y ↔ (x < y x = y) (strong_order_pair)
These might not hold constructively in some applications, but we can define additional structures
with both < and ≤ as needed.
-/
import logic.eq logic.connectives
open eq eq.ops
namespace algebra
variable {A : Type}
/- overloaded symbols -/
structure has_le [class] (A : Type) :=
(le : A → A → Prop)
structure has_lt [class] (A : Type) :=
(lt : A → A → Prop)
infixl `<=` := has_le.le
infixl `≤` := has_le.le
infixl `<` := has_lt.lt
definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a
notation a ≥ b := has_le.ge a b
notation a >= b := has_le.ge a b
definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a
notation a > b := has_lt.gt a b
theorem le_of_eq_of_le {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) :
a ≤ c := H1⁻¹ ▸ H2
theorem le_of_le_of_eq {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) :
a ≤ c := H2 ▸ H1
theorem lt_of_eq_of_lt {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) :
a < c := H1⁻¹ ▸ H2
theorem lt_of_lt_of_eq {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) :
a < c := H2 ▸ H1
calc_trans le_of_eq_of_le
calc_trans le_of_le_of_eq
calc_trans lt_of_eq_of_lt
calc_trans lt_of_lt_of_eq
/- weak orders -/
structure weak_order [class] (A : Type) extends has_le A :=
(le_refl : ∀a, le a a)
(le_trans : ∀a b c, le a b → le b c → le a c)
(le_antisymm : ∀a b, le a b → le b a → a = b)
section
variable [s : weak_order A]
include s
theorem le.refl (a : A) : a ≤ a := !weak_order.le_refl
theorem le.trans {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans
calc_trans le.trans
theorem le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm
end
structure linear_weak_order [class] (A : Type) extends weak_order A :=
(le_total : ∀a b, le a b le b a)
theorem le.total [s : linear_weak_order A] (a b : A) : a ≤ b b ≤ a :=
!linear_weak_order.le_total
/- strict orders -/
structure strict_order [class] (A : Type) extends has_lt A :=
(lt_irrefl : ∀a, ¬ lt a a)
(lt_trans : ∀a b c, lt a b → lt b c → lt a c)
section
variable [s : strict_order A]
include s
theorem lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl
theorem lt.trans {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans
calc_trans lt.trans
theorem ne_of_lt {a b : A} : a < b → a ≠ b :=
assume lt_ab : a < b, assume eq_ab : a = b,
show false, from lt.irrefl b (eq_ab ▸ lt_ab)
theorem lt.asymm {a b : A} (H : a < b) : ¬ b < a :=
assume H1 : b < a, lt.irrefl _ (lt.trans H H1)
end
/- well-founded orders -/
-- TODO: do these duplicate what Leo has done? if so, eliminate
structure wf_strict_order [class] (A : Type) extends strict_order A :=
(wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x)
definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf_strict_order.wf_rec P H x
theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop}
(x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x :=
wf.rec_on x H
/- structures with a weak and a strict order -/
structure order_pair [class] (A : Type) extends weak_order A, has_lt A :=
(lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b))
section
variable [s : order_pair A]
variables {a b c : A}
include s
theorem lt_iff_le_and_ne : a < b ↔ (a ≤ b ∧ a ≠ b) :=
!order_pair.lt_iff_le_ne
theorem le_of_lt (H : a < b) : a ≤ b :=
and.elim_left (iff.mp lt_iff_le_and_ne H)
theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b :=
iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2)
definition order_pair.to_strict_order [instance] [coercion] [s : order_pair A] : strict_order A :=
strict_order.mk
order_pair.lt
(show ∀a, ¬ a < a, from
take a,
assume H : a < a,
have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H),
H1 rfl)
(show ∀a b c, a < b → b < c → a < c, from
take a b c,
assume lt_ab : a < b,
have le_ab : a ≤ b, from le_of_lt lt_ab,
assume lt_bc : b < c,
have le_bc : b ≤ c, from le_of_lt lt_bc,
have le_ac : a ≤ c, from le.trans le_ab le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm le_ab le_ba,
have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab),
ne_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac)
theorem lt_of_lt_of_le : a < b → b ≤ c → a < c :=
assume lt_ab : a < b,
assume le_bc : b ≤ c,
have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc,
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc,
have eq_ab : a = b, from le.antisymm (le_of_lt lt_ab) le_ba,
show false, from ne_of_lt lt_ab eq_ab,
show a < c, from lt_of_le_of_ne le_ac ne_ac
theorem lt_of_le_of_lt : a ≤ b → b < c → a < c :=
assume le_ab : a ≤ b,
assume lt_bc : b < c,
have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc),
have ne_ac : a ≠ c, from
assume eq_ac : a = c,
have le_cb : c ≤ b, from eq_ac ▸ le_ab,
have eq_bc : b = c, from le.antisymm (le_of_lt lt_bc) le_cb,
show false, from ne_of_lt lt_bc eq_bc,
show a < c, from lt_of_le_of_ne le_ac ne_ac
calc_trans lt_of_lt_of_le
calc_trans lt_of_le_of_lt
theorem not_le_of_lt (H : a < b) : ¬ b ≤ a :=
assume H1 : b ≤ a,
lt.irrefl _ (lt_of_lt_of_le H H1)
theorem not_lt_of_le (H : a ≤ b) : ¬ b < a :=
assume H1 : b < a,
lt.irrefl _ (lt_of_le_of_lt H H1)
end
structure strong_order_pair [class] (A : Type) extends order_pair A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b a = b :=
!strong_order_pair.le_iff_lt_or_eq
theorem lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b a = b :=
iff.mp le_iff_lt_or_eq le_ab
-- We can also construct a strong order pair by defining a strict order, and then defining
-- x ≤ y ↔ x < y x = y
structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A :=
(le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b a = b)
definition strict_order_with_le.to_order_pair [instance] [coercion] [s : strict_order_with_le A] :
strong_order_pair A :=
strong_order_pair.mk strict_order_with_le.le
(take a,
show a ≤ a, from iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl))
(take a b c,
assume le_ab : a ≤ b,
assume le_bc : b ≤ c,
show a ≤ c, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc)
(assume lt_bc : b < c,
iff.elim_right
!strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc)))
(assume eq_bc : b = c, eq_bc ▸ le_ab))
(assume eq_ab : a = b,
eq_ab⁻¹ ▸ le_bc))
(take a b,
assume le_ab : a ≤ b,
assume le_ba : b ≤ a,
show a = b, from
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab)
(assume lt_ab : a < b,
or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba)
(assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a))
(assume eq_ba : b = a, eq_ba⁻¹))
(assume eq_ab : a = b, eq_ab))
strict_order_with_le.lt
(take a b,
iff.intro
(assume lt_ab : a < b,
have le_ab : a ≤ b,
from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab),
show a ≤ b ∧ a ≠ b, from and.intro le_ab (ne_of_lt lt_ab))
(assume H : a ≤ b ∧ a ≠ b,
have H1 : a < b a = b,
from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H),
show a < b, from or_resolve_left H1 (and.elim_right H)))
strict_order_with_le.le_iff_lt_or_eq
/- linear orders -/
structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A
structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A,
linear_weak_order A
section
variable [s : linear_strong_order_pair A]
variables (a b c : A)
include s
theorem lt.trichotomy : a < b a = b b < a :=
or.elim (le.total a b)
(assume H : a ≤ b,
or.elim (iff.mp !le_iff_lt_or_eq H) (assume H1, or.inl H1) (assume H1, or.inr (or.inl H1)))
(assume H : b ≤ a,
or.elim (iff.mp !le_iff_lt_or_eq H)
(assume H1, or.inr (or.inr H1))
(assume H1, or.inr (or.inl (H1⁻¹))))
theorem lt.by_cases {a b : A} {P : Prop}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
or.elim !lt.trichotomy
(assume H, H1 H)
(assume H, or.elim H (assume H', H2 H') (assume H', H3 H'))
definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion]
[s : linear_strong_order_pair A] : linear_order_pair A :=
linear_order_pair.mk linear_strong_order_pair.le linear_strong_order_pair.le_refl
linear_strong_order_pair.le_trans linear_strong_order_pair.le_antisymm
linear_strong_order_pair.lt
linear_strong_order_pair.lt_iff_le_ne
(take a b : A,
lt.by_cases
(assume H : a < b, or.inl (le_of_lt H))
(assume H1 : a = b, or.inl (H1 ▸ !le.refl))
(assume H1 : b < a, or.inr (le_of_lt H1)))
theorem le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a :=
lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H')
theorem lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a :=
lt.by_cases
(assume H', absurd (le_of_lt H') H)
(assume H', absurd (H' ▸ !le.refl) H)
(assume H', H')
theorem lt_or_ge (a b : A) : a < b a ≥ b :=
lt.by_cases
(assume H1 : a < b, or.inl H1)
(assume H1 : a = b, or.inr (H1 ▸ le.refl a))
(assume H1 : a > b, or.inr (le_of_lt H1))
theorem le_or_gt (a b : A) : a ≤ b a > b :=
!or.swap (lt_or_ge b a)
end
end algebra