c73398a0b8
The idea is to support conditional equations where the left-hand-side does not contain all theorem arguments, but the missing arguments can be inferred using type inference. For example, we will be able to have the eta theorem as rewrite rule: theorem eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) = f := funext (λ x : A, refl (f x)) Signed-off-by: Leonardo de Moura <leonardo@microsoft.com> |
||
---|---|---|
.. | ||
lean | ||
lua |