481 lines
20 KiB
Text
481 lines
20 KiB
Text
/-
|
||
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Jeremy Avigad, Leonardo de Moura
|
||
|
||
Definitions and properties of div and mod. Much of the development follows Isabelle's library.
|
||
-/
|
||
import data.nat.sub tools.fake_simplifier
|
||
open eq.ops well_founded decidable fake_simplifier prod
|
||
|
||
namespace nat
|
||
|
||
/- div and mod -/
|
||
|
||
-- auxiliary lemma used to justify div
|
||
private definition div_rec_lemma {x y : nat} (H : 0 < y ∧ y ≤ x) : x - y < x :=
|
||
and.rec_on H (λ ypos ylex, sub_lt (lt_of_lt_of_le ypos ylex) ypos)
|
||
|
||
private definition div.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y + 1 else zero
|
||
|
||
definition divide (x y : nat) := fix div.F x y
|
||
|
||
theorem divide_def (x y : nat) : divide x y = if 0 < y ∧ y ≤ x then divide (x - y) y + 1 else 0 :=
|
||
congr_fun (fix_eq div.F x) y
|
||
|
||
notation a div b := divide a b
|
||
|
||
theorem div_zero (a : ℕ) : a div 0 = 0 :=
|
||
divide_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
|
||
|
||
theorem div_eq_zero_of_lt {a b : ℕ} (h : a < b) : a div b = 0 :=
|
||
divide_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
|
||
|
||
theorem zero_div (b : ℕ) : 0 div b = 0 :=
|
||
divide_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
|
||
|
||
theorem div_eq_succ_sub_div {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a div b = succ ((a - b) div b) :=
|
||
divide_def a b ⬝ if_pos (and.intro h₁ h₂)
|
||
|
||
theorem add_div_self (x : ℕ) {z : ℕ} (H : z > 0) : (x + z) div z = succ (x div z) :=
|
||
calc
|
||
(x + z) div z = if 0 < z ∧ z ≤ x + z then (x + z - z) div z + 1 else 0 : !divide_def
|
||
... = (x + z - z) div z + 1 : if_pos (and.intro H (le_add_left z x))
|
||
... = succ (x div z) : {!add_sub_cancel}
|
||
|
||
theorem add_div_self_left {x : ℕ} (z : ℕ) (H : x > 0) : (x + z) div x = succ (z div x) :=
|
||
!add.comm ▸ !add_div_self H
|
||
|
||
theorem add_mul_div_self {x y z : ℕ} (H : z > 0) : (x + y * z) div z = x div z + y :=
|
||
nat.induction_on y
|
||
(calc (x + zero * z) div z = (x + zero) div z : zero_mul
|
||
... = x div z : add_zero
|
||
... = x div z + zero : add_zero)
|
||
(take y,
|
||
assume IH : (x + y * z) div z = x div z + y, calc
|
||
(x + succ y * z) div z = (x + y * z + z) div z : by simp
|
||
... = succ ((x + y * z) div z) : !add_div_self H
|
||
... = x div z + succ y : by simp)
|
||
|
||
theorem add_mul_div_self_left (x z : ℕ) {y : ℕ} (H : y > 0) : (x + y * z) div y = x div y + z :=
|
||
!mul.comm ▸ add_mul_div_self H
|
||
|
||
theorem mul_div_cancel (m : ℕ) {n : ℕ} (H : n > 0) : m * n div n = m :=
|
||
calc
|
||
m * n div n = (0 + m * n) div n : zero_add
|
||
... = 0 div n + m : add_mul_div_self H
|
||
... = 0 + m : zero_div
|
||
... = m : zero_add
|
||
|
||
theorem mul_div_cancel_left {m : ℕ} (n : ℕ) (H : m > 0) : m * n div m = n :=
|
||
!mul.comm ▸ !mul_div_cancel H
|
||
|
||
private definition mod.F (x : nat) (f : Π x₁, x₁ < x → nat → nat) (y : nat) : nat :=
|
||
if H : 0 < y ∧ y ≤ x then f (x - y) (div_rec_lemma H) y else x
|
||
|
||
definition modulo (x y : nat) := fix mod.F x y
|
||
|
||
notation a mod b := modulo a b
|
||
|
||
theorem modulo_def (x y : nat) : modulo x y = if 0 < y ∧ y ≤ x then modulo (x - y) y else x :=
|
||
congr_fun (fix_eq mod.F x) y
|
||
|
||
theorem mod_zero (a : ℕ) : a mod 0 = a :=
|
||
modulo_def a 0 ⬝ if_neg (!not_and_of_not_left (lt.irrefl 0))
|
||
|
||
theorem mod_eq_of_lt {a b : ℕ} (h : a < b) : a mod b = a :=
|
||
modulo_def a b ⬝ if_neg (!not_and_of_not_right (not_le_of_gt h))
|
||
|
||
theorem zero_mod (b : ℕ) : 0 mod b = 0 :=
|
||
modulo_def 0 b ⬝ if_neg (λ h, and.rec_on h (λ l r, absurd (lt_of_lt_of_le l r) (lt.irrefl 0)))
|
||
|
||
theorem mod_eq_sub_mod {a b : ℕ} (h₁ : b > 0) (h₂ : a ≥ b) : a mod b = (a - b) mod b :=
|
||
modulo_def a b ⬝ if_pos (and.intro h₁ h₂)
|
||
|
||
theorem add_mod_self (x z : ℕ) : (x + z) mod z = x mod z :=
|
||
by_cases_zero_pos z
|
||
(by rewrite add_zero)
|
||
(take z, assume H : z > 0,
|
||
calc
|
||
(x + z) mod z = if 0 < z ∧ z ≤ x + z then (x + z - z) mod z else _ : modulo_def
|
||
... = (x + z - z) mod z : if_pos (and.intro H (le_add_left z x))
|
||
... = x mod z : add_sub_cancel)
|
||
|
||
theorem add_mod_self_left (x z : ℕ) : (x + z) mod x = z mod x :=
|
||
!add.comm ▸ !add_mod_self
|
||
|
||
theorem add_mul_mod_self (x y z : ℕ) : (x + y * z) mod z = x mod z :=
|
||
nat.induction_on y
|
||
(calc (x + zero * z) mod z = (x + zero) mod z : zero_mul
|
||
... = x mod z : add_zero)
|
||
(take y,
|
||
assume IH : (x + y * z) mod z = x mod z,
|
||
calc
|
||
(x + succ y * z) mod z = (x + (y * z + z)) mod z : succ_mul
|
||
... = (x + y * z + z) mod z : add.assoc
|
||
... = (x + y * z) mod z : !add_mod_self
|
||
... = x mod z : IH)
|
||
|
||
theorem add_mul_mod_self_left (x y z : ℕ) : (x + y * z) mod y = x mod y :=
|
||
!mul.comm ▸ !add_mul_mod_self
|
||
|
||
theorem mul_mod_left (m n : ℕ) : (m * n) mod n = 0 :=
|
||
by rewrite [-zero_add (m * n), add_mul_mod_self, zero_mod]
|
||
|
||
theorem mul_mod_right (m n : ℕ) : (m * n) mod m = 0 :=
|
||
!mul.comm ▸ !mul_mod_left
|
||
|
||
theorem mod_lt (x : ℕ) {y : ℕ} (H : y > 0) : x mod y < y :=
|
||
nat.case_strong_induction_on x
|
||
(show 0 mod y < y, from !zero_mod⁻¹ ▸ H)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' mod y < y,
|
||
show succ x mod y < y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||
show succ x mod y < y, from H2⁻¹ ▸ H1)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
||
have H3 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
||
have H4 : succ x - y < succ x, from sub_lt !succ_pos H,
|
||
have H5 : succ x - y ≤ x, from le_of_lt_succ H4,
|
||
show succ x mod y < y, from H3⁻¹ ▸ IH _ H5))
|
||
|
||
/- properties of div and mod together -/
|
||
|
||
-- the quotient / remainder theorem
|
||
theorem eq_div_mul_add_mod (x y : ℕ) : x = x div y * y + x mod y :=
|
||
by_cases_zero_pos y
|
||
(show x = x div 0 * 0 + x mod 0, from
|
||
(calc
|
||
x div 0 * 0 + x mod 0 = 0 + x mod 0 : mul_zero
|
||
... = x mod 0 : zero_add
|
||
... = x : mod_zero)⁻¹)
|
||
(take y,
|
||
assume H : y > 0,
|
||
show x = x div y * y + x mod y, from
|
||
nat.case_strong_induction_on x
|
||
(show 0 = (0 div y) * y + 0 mod y, by simp)
|
||
(take x,
|
||
assume IH : ∀x', x' ≤ x → x' = x' div y * y + x' mod y,
|
||
show succ x = succ x div y * y + succ x mod y, from
|
||
by_cases -- (succ x < y)
|
||
(assume H1 : succ x < y,
|
||
have H2 : succ x div y = 0, from div_eq_zero_of_lt H1,
|
||
have H3 : succ x mod y = succ x, from mod_eq_of_lt H1,
|
||
by simp)
|
||
(assume H1 : ¬ succ x < y,
|
||
have H2 : y ≤ succ x, from le_of_not_gt H1,
|
||
have H3 : succ x div y = succ ((succ x - y) div y), from div_eq_succ_sub_div H H2,
|
||
have H4 : succ x mod y = (succ x - y) mod y, from mod_eq_sub_mod H H2,
|
||
have H5 : succ x - y < succ x, from sub_lt !succ_pos H,
|
||
have H6 : succ x - y ≤ x, from le_of_lt_succ H5,
|
||
(calc
|
||
succ x div y * y + succ x mod y =
|
||
succ ((succ x - y) div y) * y + succ x mod y : H3
|
||
... = ((succ x - y) div y) * y + y + succ x mod y : succ_mul
|
||
... = ((succ x - y) div y) * y + y + (succ x - y) mod y : H4
|
||
... = ((succ x - y) div y) * y + (succ x - y) mod y + y : add.right_comm
|
||
... = succ x - y + y : {!(IH _ H6)⁻¹}
|
||
... = succ x : sub_add_cancel H2)⁻¹)))
|
||
|
||
theorem mod_le {x y : ℕ} : x mod y ≤ x :=
|
||
!eq_div_mul_add_mod⁻¹ ▸ !le_add_left
|
||
|
||
theorem eq_remainder {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : r1 = r2 :=
|
||
calc
|
||
r1 = r1 mod y : by simp
|
||
... = (r1 + q1 * y) mod y : !add_mul_mod_self⁻¹
|
||
... = (q1 * y + r1) mod y : add.comm
|
||
... = (r2 + q2 * y) mod y : by simp
|
||
... = r2 mod y : !add_mul_mod_self
|
||
... = r2 : by simp
|
||
|
||
theorem eq_quotient {q1 r1 q2 r2 y : ℕ} (H1 : r1 < y) (H2 : r2 < y)
|
||
(H3 : q1 * y + r1 = q2 * y + r2) : q1 = q2 :=
|
||
have H4 : q1 * y + r2 = q2 * y + r2, from (eq_remainder H1 H2 H3) ▸ H3,
|
||
have H5 : q1 * y = q2 * y, from add.cancel_right H4,
|
||
have H6 : y > 0, from lt_of_le_of_lt !zero_le H1,
|
||
show q1 = q2, from eq_of_mul_eq_mul_right H6 H5
|
||
|
||
theorem mul_div_mul_left {z : ℕ} (x y : ℕ) (zpos : z > 0) : (z * x) div (z * y) = x div y :=
|
||
by_cases -- (y = 0)
|
||
(assume H : y = 0, by simp)
|
||
(assume H : y ≠ 0,
|
||
have ypos : y > 0, from pos_of_ne_zero H,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
|
||
eq_quotient H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
|
||
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
|
||
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
|
||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm))
|
||
|
||
theorem mul_div_mul_right {x z y : ℕ} (zpos : z > 0) : (x * z) div (y * z) = x div y :=
|
||
!mul.comm ▸ !mul.comm ▸ !mul_div_mul_left zpos
|
||
|
||
theorem mul_mod_mul_left (z x y : ℕ) : (z * x) mod (z * y) = z * (x mod y) :=
|
||
or.elim (eq_zero_or_pos z)
|
||
(assume H : z = 0,
|
||
calc
|
||
(z * x) mod (z * y) = (0 * x) mod (z * y) : by subst z
|
||
... = 0 mod (z * y) : zero_mul
|
||
... = 0 : zero_mod
|
||
... = 0 * (x mod y) : zero_mul
|
||
... = z * (x mod y) : by subst z)
|
||
(assume zpos : z > 0,
|
||
or.elim (eq_zero_or_pos y)
|
||
(assume H : y = 0, by rewrite [H, mul_zero, *mod_zero])
|
||
(assume ypos : y > 0,
|
||
have zypos : z * y > 0, from mul_pos zpos ypos,
|
||
have H1 : (z * x) mod (z * y) < z * y, from !mod_lt zypos,
|
||
have H2 : z * (x mod y) < z * y, from mul_lt_mul_of_pos_left (!mod_lt ypos) zpos,
|
||
eq_remainder H1 H2
|
||
(calc
|
||
((z * x) div (z * y)) * (z * y) + (z * x) mod (z * y) = z * x : eq_div_mul_add_mod
|
||
... = z * (x div y * y + x mod y) : eq_div_mul_add_mod
|
||
... = z * (x div y * y) + z * (x mod y) : mul.left_distrib
|
||
... = (x div y) * (z * y) + z * (x mod y) : mul.left_comm)))
|
||
|
||
theorem mul_mod_mul_right (x z y : ℕ) : (x * z) mod (y * z) = (x mod y) * z :=
|
||
mul.comm z x ▸ mul.comm z y ▸ !mul.comm ▸ !mul_mod_mul_left
|
||
|
||
theorem mod_one (n : ℕ) : n mod 1 = 0 :=
|
||
have H1 : n mod 1 < 1, from !mod_lt !succ_pos,
|
||
eq_zero_of_le_zero (le_of_lt_succ H1)
|
||
|
||
theorem mod_self (n : ℕ) : n mod n = 0 :=
|
||
nat.cases_on n (by simp)
|
||
(take n,
|
||
have H : (succ n * 1) mod (succ n * 1) = succ n * (1 mod 1),
|
||
from !mul_mod_mul_left,
|
||
(by simp) ▸ H)
|
||
|
||
theorem mul_mod_eq_mod_mul_mod (m n k : nat) : (m * n) mod k = ((m mod k) * n) mod k :=
|
||
calc
|
||
(m * n) mod k = (((m div k) * k + m mod k) * n) mod k : eq_div_mul_add_mod
|
||
... = ((m mod k) * n) mod k :
|
||
by rewrite [mul.right_distrib, mul.right_comm, add.comm, add_mul_mod_self]
|
||
|
||
theorem mul_mod_eq_mul_mod_mod (m n k : nat) : (m * n) mod k = (m * (n mod k)) mod k :=
|
||
!mul.comm ▸ !mul.comm ▸ !mul_mod_eq_mod_mul_mod
|
||
|
||
theorem div_one (n : ℕ) : n div 1 = n :=
|
||
have H : n div 1 * 1 + n mod 1 = n, from !eq_div_mul_add_mod⁻¹,
|
||
(by simp) ▸ H
|
||
|
||
theorem div_self {n : ℕ} (H : n > 0) : n div n = 1 :=
|
||
have H1 : (n * 1) div (n * 1) = 1 div 1, from !mul_div_mul_left H,
|
||
(by simp) ▸ H1
|
||
|
||
theorem div_mul_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : m div n * n = m :=
|
||
by rewrite [eq_div_mul_add_mod m n at {2}, H, add_zero]
|
||
|
||
theorem mul_div_cancel_of_mod_eq_zero {m n : ℕ} (H : m mod n = 0) : n * (m div n) = m :=
|
||
!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H
|
||
|
||
theorem div_lt_of_lt_mul {m n k : ℕ} (H : m < k * n) : m div k < n :=
|
||
lt_of_mul_lt_mul_right (calc
|
||
m div k * k ≤ m div k * k + m mod k : le_add_right
|
||
... = m : eq_div_mul_add_mod
|
||
... < k * n : H
|
||
... = n * k : nat.mul.comm)
|
||
|
||
theorem div_le_of_le_mul {m n k : ℕ} (H : m ≤ k * n) : m div k ≤ n :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H1 : k = 0,
|
||
calc
|
||
m div k = m div 0 : H1
|
||
... = 0 : div_zero
|
||
... ≤ n : zero_le)
|
||
(assume H1 : k > 0,
|
||
le_of_mul_le_mul_right (calc
|
||
m div k * k ≤ m div k * k + m mod k : le_add_right
|
||
... = m : eq_div_mul_add_mod
|
||
... ≤ k * n : H
|
||
... = n * k : nat.mul.comm) H1)
|
||
|
||
theorem div_le (m n : ℕ) : m div n ≤ m :=
|
||
nat.cases_on n (!div_zero⁻¹ ▸ !zero_le)
|
||
take n,
|
||
have H : m ≤ succ n * m, from calc
|
||
m = 1 * m : one_mul
|
||
... ≤ succ n * m : mul_le_mul_right (succ_le_succ !zero_le),
|
||
div_le_of_le_mul H
|
||
|
||
theorem mul_sub_div_of_lt {m n k : ℕ} (H : k < m * n) :
|
||
(m * n - (k + 1)) div m = n - k div m - 1 :=
|
||
have H1 : k div m < n, from div_lt_of_lt_mul H,
|
||
have H2 : n - k div m ≥ 1, from
|
||
le_sub_of_add_le (calc
|
||
1 + k div m = succ (k div m) : add.comm
|
||
... ≤ n : succ_le_of_lt H1),
|
||
assert H3 : n - k div m = n - k div m - 1 + 1, from (sub_add_cancel H2)⁻¹,
|
||
assert H4 : m > 0, from pos_of_ne_zero (assume H': m = 0, not_lt_zero _ (!zero_mul ▸ H' ▸ H)),
|
||
have H5 : k mod m + 1 ≤ m, from succ_le_of_lt (!mod_lt H4),
|
||
assert H6 : m - (k mod m + 1) < m, from sub_lt_self H4 !succ_pos,
|
||
calc
|
||
(m * n - (k + 1)) div m = (m * n - (k div m * m + k mod m + 1)) div m : eq_div_mul_add_mod
|
||
... = (m * n - k div m * m - (k mod m + 1)) div m : by rewrite [*sub_sub]
|
||
... = ((n - k div m) * m - (k mod m + 1)) div m :
|
||
by rewrite [mul.comm m, mul_sub_right_distrib]
|
||
... = ((n - k div m - 1) * m + m - (k mod m + 1)) div m :
|
||
by rewrite [H3 at {1}, mul.right_distrib, nat.one_mul]
|
||
... = ((n - k div m - 1) * m + (m - (k mod m + 1))) div m : {add_sub_assoc H5 _}
|
||
... = (m - (k mod m + 1)) div m + (n - k div m - 1) :
|
||
by rewrite [add.comm, (add_mul_div_self H4)]
|
||
... = n - k div m - 1 :
|
||
by rewrite [div_eq_zero_of_lt H6, zero_add]
|
||
|
||
/- divides -/
|
||
|
||
theorem dvd_of_mod_eq_zero {m n : ℕ} (H : n mod m = 0) : m ∣ n :=
|
||
dvd.intro (!mul.comm ▸ div_mul_cancel_of_mod_eq_zero H)
|
||
|
||
theorem mod_eq_zero_of_dvd {m n : ℕ} (H : m ∣ n) : n mod m = 0 :=
|
||
dvd.elim H (take z, assume H1 : n = m * z, H1⁻¹ ▸ !mul_mod_right)
|
||
|
||
theorem dvd_iff_mod_eq_zero (m n : ℕ) : m ∣ n ↔ n mod m = 0 :=
|
||
iff.intro mod_eq_zero_of_dvd dvd_of_mod_eq_zero
|
||
|
||
definition dvd.decidable_rel [instance] : decidable_rel dvd :=
|
||
take m n, decidable_of_decidable_of_iff _ (iff.symm !dvd_iff_mod_eq_zero)
|
||
|
||
theorem div_mul_cancel {m n : ℕ} (H : n ∣ m) : m div n * n = m :=
|
||
div_mul_cancel_of_mod_eq_zero (mod_eq_zero_of_dvd H)
|
||
|
||
theorem mul_div_cancel' {m n : ℕ} (H : n ∣ m) : n * (m div n) = m :=
|
||
!mul.comm ▸ div_mul_cancel H
|
||
|
||
theorem dvd_of_dvd_add_left {m n₁ n₂ : ℕ} (H₁ : m ∣ n₁ + n₂) (H₂ : m ∣ n₁) : m ∣ n₂ :=
|
||
obtain (c₁ : nat) (Hc₁ : n₁ + n₂ = m * c₁), from H₁,
|
||
obtain (c₂ : nat) (Hc₂ : n₁ = m * c₂), from H₂,
|
||
have aux : m * (c₁ - c₂) = n₂, from calc
|
||
m * (c₁ - c₂) = m * c₁ - m * c₂ : mul_sub_left_distrib
|
||
... = n₁ + n₂ - m * c₂ : Hc₁
|
||
... = n₁ + n₂ - n₁ : Hc₂
|
||
... = n₂ : add_sub_cancel_left,
|
||
dvd.intro aux
|
||
|
||
theorem dvd_of_dvd_add_right {m n1 n2 : ℕ} (H : m ∣ (n1 + n2)) : m ∣ n2 → m ∣ n1 :=
|
||
dvd_of_dvd_add_left (!add.comm ▸ H)
|
||
|
||
theorem dvd_sub {m n1 n2 : ℕ} (H1 : m ∣ n1) (H2 : m ∣ n2) : m ∣ n1 - n2 :=
|
||
by_cases
|
||
(assume H3 : n1 ≥ n2,
|
||
have H4 : n1 = n1 - n2 + n2, from (sub_add_cancel H3)⁻¹,
|
||
show m ∣ n1 - n2, from dvd_of_dvd_add_right (H4 ▸ H1) H2)
|
||
(assume H3 : ¬ (n1 ≥ n2),
|
||
have H4 : n1 - n2 = 0, from sub_eq_zero_of_le (le_of_lt (lt_of_not_ge H3)),
|
||
show m ∣ n1 - n2, from H4⁻¹ ▸ dvd_zero _)
|
||
|
||
theorem dvd.antisymm {m n : ℕ} : m ∣ n → n ∣ m → m = n :=
|
||
by_cases_zero_pos n
|
||
(assume H1, assume H2 : 0 ∣ m, eq_zero_of_zero_dvd H2)
|
||
(take n,
|
||
assume Hpos : n > 0,
|
||
assume H1 : m ∣ n,
|
||
assume H2 : n ∣ m,
|
||
obtain k (Hk : n = m * k), from exists_eq_mul_right_of_dvd H1,
|
||
obtain l (Hl : m = n * l), from exists_eq_mul_right_of_dvd H2,
|
||
have H3 : n * (l * k) = n, from !mul.assoc ▸ Hl ▸ Hk⁻¹,
|
||
have H4 : l * k = 1, from eq_one_of_mul_eq_self_right Hpos H3,
|
||
have H5 : k = 1, from eq_one_of_mul_eq_one_left H4,
|
||
show m = n, from (mul_one m)⁻¹ ⬝ (H5 ▸ Hk⁻¹))
|
||
|
||
theorem mul_div_assoc (m : ℕ) {n k : ℕ} (H : k ∣ n) : m * n div k = m * (n div k) :=
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H1 : k = 0,
|
||
calc
|
||
m * n div k = m * n div 0 : H1
|
||
... = 0 : div_zero
|
||
... = m * 0 : mul_zero m
|
||
... = m * (n div 0) : div_zero
|
||
... = m * (n div k) : H1)
|
||
(assume H1 : k > 0,
|
||
have H2 : n = n div k * k, from (div_mul_cancel H)⁻¹,
|
||
calc
|
||
m * n div k = m * (n div k * k) div k : H2
|
||
... = m * (n div k) * k div k : mul.assoc
|
||
... = m * (n div k) : mul_div_cancel _ H1)
|
||
|
||
theorem dvd_of_mul_dvd_mul_left {m n k : ℕ} (kpos : k > 0) (H : k * m ∣ k * n) : m ∣ n :=
|
||
dvd.elim H
|
||
(take l,
|
||
assume H1 : k * n = k * m * l,
|
||
have H2 : n = m * l, from eq_of_mul_eq_mul_left kpos (H1 ⬝ !mul.assoc),
|
||
dvd.intro H2⁻¹)
|
||
|
||
theorem dvd_of_mul_dvd_mul_right {m n k : ℕ} (kpos : k > 0) (H : m * k ∣ n * k) : m ∣ n :=
|
||
dvd_of_mul_dvd_mul_left kpos (!mul.comm ▸ !mul.comm ▸ H)
|
||
|
||
theorem div_dvd_div {k m n : ℕ} (H1 : k ∣ m) (H2 : m ∣ n) : m div k ∣ n div k :=
|
||
have H3 : m = m div k * k, from (div_mul_cancel H1)⁻¹,
|
||
have H4 : n = n div k * k, from (div_mul_cancel (dvd.trans H1 H2))⁻¹,
|
||
or.elim (eq_zero_or_pos k)
|
||
(assume H5 : k = 0,
|
||
have H6: n div k = 0, from (congr_arg _ H5 ⬝ !div_zero),
|
||
H6⁻¹ ▸ !dvd_zero)
|
||
(assume H5 : k > 0,
|
||
dvd_of_mul_dvd_mul_right H5 (H3 ▸ H4 ▸ H2))
|
||
|
||
theorem div_eq_iff_eq_mul_right {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) :
|
||
m div n = k ↔ m = n * k :=
|
||
iff.intro
|
||
(assume H1, by rewrite [-H1, mul_div_cancel' H'])
|
||
(assume H1, by rewrite [H1, !mul_div_cancel_left H])
|
||
|
||
theorem div_eq_iff_eq_mul_left {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) :
|
||
m div n = k ↔ m = k * n :=
|
||
!mul.comm ▸ !div_eq_iff_eq_mul_right H H'
|
||
|
||
theorem eq_mul_of_div_eq_right {m n k : ℕ} (H1 : n ∣ m) (H2 : m div n = k) :
|
||
m = n * k :=
|
||
calc
|
||
m = n * (m div n) : mul_div_cancel' H1
|
||
... = n * k : H2
|
||
|
||
theorem div_eq_of_eq_mul_right {m n k : ℕ} (H1 : n > 0) (H2 : m = n * k) :
|
||
m div n = k :=
|
||
calc
|
||
m div n = n * k div n : H2
|
||
... = k : !mul_div_cancel_left H1
|
||
|
||
theorem eq_mul_of_div_eq_left {m n k : ℕ} (H1 : n ∣ m) (H2 : m div n = k) :
|
||
m = k * n :=
|
||
!mul.comm ▸ !eq_mul_of_div_eq_right H1 H2
|
||
|
||
theorem div_eq_of_eq_mul_left {m n k : ℕ} (H1 : n > 0) (H2 : m = k * n) :
|
||
m div n = k :=
|
||
!div_eq_of_eq_mul_right H1 (!mul.comm ▸ H2)
|
||
|
||
theorem div_le_iff_le_mul_right {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) :
|
||
m div n ≤ k ↔ m ≤ k * n :=
|
||
by rewrite [propext (!le_iff_mul_le_mul_right H), !div_mul_cancel H']
|
||
|
||
theorem div_le_iff_le_mul_left {m n : ℕ} (k : ℕ) (H : n > 0) (H' : n ∣ m) :
|
||
m div n ≤ k ↔ m ≤ n * k :=
|
||
!mul.comm ▸ !div_le_iff_le_mul_right H H'
|
||
|
||
theorem eq_mul_of_div_le_right {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m div n ≤ k) :
|
||
m ≤ k * n :=
|
||
iff.mp (!div_le_iff_le_mul_right H1 H2) H3
|
||
|
||
theorem div_le_of_eq_mul_right {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m ≤ k * n) :
|
||
m div n ≤ k :=
|
||
iff.mp' (!div_le_iff_le_mul_right H1 H2) H3
|
||
|
||
theorem eq_mul_of_div_le_left {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m div n ≤ k) :
|
||
m ≤ n * k :=
|
||
iff.mp (!div_le_iff_le_mul_left H1 H2) H3
|
||
|
||
theorem div_le_of_eq_mul_left {m n k : ℕ} (H1 : n > 0) (H2 : n ∣ m) (H3 : m ≤ n * k) :
|
||
m div n ≤ k :=
|
||
iff.mp' (!div_le_iff_le_mul_left H1 H2) H3
|
||
|
||
end nat
|