lean2/library/data/set/basic.lean

221 lines
7.1 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Leonardo de Moura
-/
import logic algebra.binary
open eq.ops binary
definition set [reducible] (X : Type) := X → Prop
namespace set
variable {X : Type}
/- membership and subset -/
definition mem [reducible] (x : X) (a : set X) := a x
infix `∈` := mem
notation a ∉ b := ¬ mem a b
theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b :=
funext (take x, propext (H x))
definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b
infix `⊆` := subset
theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H
theorem subset.trans (a b c : set X) (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c :=
take x, assume ax, subbc (subab ax)
theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb))
-- an alterantive name
theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b :=
subset.antisymm h₁ h₂
definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b
infix `⊂`:50 := strict_subset
theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a :=
assume h, absurd rfl (and.elim_right h)
/- bounded quantification -/
abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x
notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r
abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x
notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r
/- empty set -/
definition empty [reducible] : set X := λx, false
notation `∅` := empty
theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) :=
assume H : x ∈ ∅, H
theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl
theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ :=
setext (take x, iff.intro
(assume xs, absurd xs (H x))
(assume xe, absurd xe !not_mem_empty))
theorem empty_subset (s : set X) : ∅ ⊆ s :=
take x, assume H, false.elim H
theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ :=
subset.antisymm H (empty_subset s)
theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ :=
iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅)
/- universal set -/
definition univ : set X := λx, true
theorem mem_univ (x : X) : x ∈ univ := trivial
theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl
theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ :=
assume H : empty = univ,
absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _))
/- union -/
definition union [reducible] (a b : set X) : set X := λx, x ∈ a x ∈ b
notation a b := union a b
theorem mem_union (x : X) (a b : set X) : x ∈ a b ↔ x ∈ a x ∈ b := !iff.refl
theorem mem_union_eq (x : X) (a b : set X) : x ∈ a b = (x ∈ a x ∈ b) := rfl
theorem union_self (a : set X) : a a = a :=
setext (take x, !or_self)
theorem union_empty (a : set X) : a ∅ = a :=
setext (take x, !or_false)
theorem empty_union (a : set X) : ∅ a = a :=
setext (take x, !false_or)
theorem union.comm (a b : set X) : a b = b a :=
setext (take x, or.comm)
theorem union.assoc (a b c : set X) : (a b) c = a (b c) :=
setext (take x, or.assoc)
theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ (s₂ s₃) = s₂ (s₁ s₃) :=
!left_comm union.comm union.assoc s₁ s₂ s₃
theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ s₂) s₃ = (s₁ s₃) s₂ :=
!right_comm union.comm union.assoc s₁ s₂ s₃
/- intersection -/
definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b
notation a ∩ b := inter a b
theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl
theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl
theorem inter_self (a : set X) : a ∩ a = a :=
setext (take x, !and_self)
theorem inter_empty (a : set X) : a ∩ ∅ = ∅ :=
setext (take x, !and_false)
theorem empty_inter (a : set X) : ∅ ∩ a = ∅ :=
setext (take x, !false_and)
theorem inter.comm (a b : set X) : a ∩ b = b ∩ a :=
setext (take x, !and.comm)
theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) :=
setext (take x, !and.assoc)
theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) :=
!left_comm inter.comm inter.assoc s₁ s₂ s₃
theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ :=
!right_comm inter.comm inter.assoc s₁ s₂ s₃
theorem inter_univ (a : set X) : a ∩ univ = a :=
setext (take x, !and_true)
theorem univ_inter (a : set X) : univ ∩ a = a :=
setext (take x, !true_and)
/- distributivity laws -/
theorem inter.distrib_left (s t u : set X) : s ∩ (t u) = (s ∩ t) (s ∩ u) :=
setext (take x, !and.distrib_left)
theorem inter.distrib_right (s t u : set X) : (s t) ∩ u = (s ∩ u) (t ∩ u) :=
setext (take x, !and.distrib_right)
theorem union.distrib_left (s t u : set X) : s (t ∩ u) = (s t) ∩ (s u) :=
setext (take x, !or.distrib_left)
theorem union.distrib_right (s t u : set X) : (s ∩ t) u = (s u) ∩ (t u) :=
setext (take x, !or.distrib_right)
/- set-builder notation -/
-- {x : X | P}
definition set_of (P : X → Prop) : set X := P
notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r
-- {x ∈ s | P}
definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x
notation `{` binders ∈ s `|` r:(scoped:1 p, filter p s) `}` := r
-- '{x, y, z}
definition insert (x : X) (a : set X) : set X := {y : X | y = x y ∈ a}
notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a
/- set difference -/
definition diff (s t : set X) : set X := {x ∈ s | x ∉ t}
infix `\`:70 := diff
theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s :=
and.left H
theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t :=
and.right H
theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t :=
and.intro H1 H2
theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl
theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl
/- large unions -/
section
variables {I : Type}
variable a : set I
variable b : I → set X
variable C : set (set X)
definition Inter : set X := {x : X | ∀i, x ∈ b i}
definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i}
definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c}
definition Union : set X := {x : X | ∃i, x ∈ b i}
definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i}
definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c}
-- TODO: need notation for these
end
end set