lean2/library/logic/instances.lean
2015-05-23 20:52:23 +10:00

101 lines
3.7 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Class instances for iff and eq.
-/
import logic.connectives algebra.relation
namespace relation
/- logical equivalence relations -/
theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) :=
relation.is_equivalence.mk (@eq.refl T) (@eq.symm T) (@eq.trans T)
theorem is_equivalence_iff [instance] : relation.is_equivalence iff :=
relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans
/- congruences for logic operations -/
theorem is_congruence_not : is_congruence iff iff not :=
is_congruence.mk
(take a b,
assume H : a ↔ b, iff.intro
(assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2))
(assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2)))
theorem is_congruence_and : is_congruence2 iff iff iff and :=
is_congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ∧ a2, and_of_and_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 ∧ b2, and_of_and_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem is_congruence_or : is_congruence2 iff iff iff or :=
is_congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 a2, or_of_or_of_imp_of_imp H3 (iff.elim_left H1) (iff.elim_left H2))
(assume H3 : b1 b2, or_of_or_of_imp_of_imp H3 (iff.elim_right H1) (iff.elim_right H2)))
theorem is_congruence_imp : is_congruence2 iff iff iff imp :=
is_congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1)))
(assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1))))
theorem is_congruence_iff : is_congruence2 iff iff iff iff :=
is_congruence2.mk
(take a1 b1 a2 b2,
assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2,
iff.intro
(assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2))
(assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2))))
definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not
definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and
definition is_congruence_or_compose [instance] := is_congruence.compose21 is_congruence_or
definition is_congruence_implies_compose [instance] := is_congruence.compose21 is_congruence_imp
definition is_congruence_iff_compose [instance] := is_congruence.compose21 is_congruence_iff
/- a general substitution operation with respect to an arbitrary congruence -/
namespace general_subst
theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ [C : is_congruence R iff P]
{a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (is_congruence.app C H) H1
end general_subst
/- iff can be coerced to implication -/
definition mp_like_iff [instance] : relation.mp_like iff :=
relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H)
/- support for calculations with iff -/
namespace iff
theorem subst {P : Prop → Prop} [C : is_congruence iff iff P] {a b : Prop}
(H : a ↔ b) (H1 : P a) : P b :=
@general_subst.subst Prop iff P C a b H H1
end iff
attribute iff.subst [subst]
namespace iff_ops
notation H ⁻¹ := iff.symm H
notation H1 ⬝ H2 := iff.trans H1 H2
notation H1 ▸ H2 := iff.subst H1 H2
definition refl := iff.refl
definition symm := @iff.symm
definition trans := @iff.trans
definition subst := @iff.subst
definition mp := @iff.mp
end iff_ops
end relation