237 lines
8.7 KiB
Text
237 lines
8.7 KiB
Text
/-
|
||
Copyright (c) 2014-15 Floris van Doorn. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Author: Floris van Doorn
|
||
|
||
Partially ported from Coq HoTT
|
||
Theorems about pi-types (dependent function spaces)
|
||
-/
|
||
|
||
import types.sigma arity
|
||
|
||
open eq equiv is_equiv funext sigma
|
||
|
||
namespace pi
|
||
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
|
||
{D : Πa b, C a b → Type}
|
||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
|
||
|
||
/- Paths -/
|
||
|
||
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ∼ g].
|
||
|
||
This equivalence, however, is just the combination of [apd10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
|
||
|
||
/- Now we show how these things compute. -/
|
||
|
||
definition apd10_eq_of_homotopy (h : f ∼ g) : apd10 (eq_of_homotopy h) ∼ h :=
|
||
apd10 (right_inv apd10 h)
|
||
|
||
definition eq_of_homotopy_eta (p : f = g) : eq_of_homotopy (apd10 p) = p :=
|
||
left_inv apd10 p
|
||
|
||
definition eq_of_homotopy_idp (f : Πa, B a) : eq_of_homotopy (λx : A, refl (f x)) = refl f :=
|
||
!eq_of_homotopy_eta
|
||
|
||
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
|
||
|
||
definition eq_equiv_homotopy (f g : Πx, B x) : (f = g) ≃ (f ∼ g) :=
|
||
equiv.mk _ !is_equiv_apd
|
||
|
||
definition is_equiv_eq_of_homotopy [instance] (f g : Πx, B x)
|
||
: is_equiv (@eq_of_homotopy _ _ f g) :=
|
||
is_equiv_inv apd10
|
||
|
||
definition homotopy_equiv_eq (f g : Πx, B x) : (f ∼ g) ≃ (f = g) :=
|
||
equiv.mk _ !is_equiv_eq_of_homotopy
|
||
|
||
|
||
/- Transport -/
|
||
|
||
definition pi_transport (p : a = a') (f : Π(b : B a), C a b)
|
||
: (transport (λa, Π(b : B a), C a b) p f)
|
||
∼ (λb, transport (C a') !tr_inv_tr (transportD _ p _ (f (p⁻¹ ▸ b)))) :=
|
||
eq.rec_on p (λx, idp)
|
||
|
||
/- A special case of [transport_pi] where the type [B] does not depend on [A],
|
||
and so it is just a fixed type [B]. -/
|
||
definition pi_transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) (b : A')
|
||
: (transport (λa, Π(b : A'), C a b) p f) b = transport (λa, C a b) p (f b) :=
|
||
eq.rec_on p idp
|
||
|
||
/- Pathovers -/
|
||
|
||
definition pi_pathover {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b : B a) (b' : B a') (q : b =[p] b'), f b =[apo011 C p q] g b') : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_left {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b : B a), f b =[apo011 C p !pathover_tr] g (p ▸ b)) : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_right {f : Πb, C a b} {g : Πb', C a' b'} {p : a = a'}
|
||
(r : Π(b' : B a'), f (p⁻¹ ▸ b') =[apo011 C p !tr_pathover] g b') : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
apply eq_of_pathover_idp, apply r
|
||
end
|
||
|
||
definition pi_pathover_constant {C : A → A' → Type} {f : Π(b : A'), C a b}
|
||
{g : Π(b : A'), C a' b} {p : a = a'}
|
||
(r : Π(b : A'), f b =[p] g b) : f =[p] g :=
|
||
begin
|
||
cases p, apply pathover_idp_of_eq,
|
||
apply eq_of_homotopy, intro b,
|
||
exact eq_of_pathover_idp (r b),
|
||
end
|
||
|
||
/- Maps on paths -/
|
||
|
||
/- The action of maps given by lambda. -/
|
||
definition ap_lambdaD {C : A' → Type} (p : a = a') (f : Πa b, C b) :
|
||
ap (λa b, f a b) p = eq_of_homotopy (λb, ap (λa, f a b) p) :=
|
||
begin
|
||
apply (eq.rec_on p),
|
||
apply inverse,
|
||
apply eq_of_homotopy_idp
|
||
end
|
||
|
||
/- Dependent paths -/
|
||
|
||
/- with more implicit arguments the conclusion of the following theorem is
|
||
(Π(b : B a), transportD B C p b (f b) = g (transport B p b)) ≃
|
||
(transport (λa, Π(b : B a), C a b) p f = g) -/
|
||
definition heq_piD (p : a = a') (f : Π(b : B a), C a b)
|
||
(g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▸D (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
|
||
eq.rec_on p (λg, !homotopy_equiv_eq) g
|
||
|
||
definition heq_pi {C : A → Type} (p : a = a') (f : Π(b : B a), C a)
|
||
(g : Π(b' : B a'), C a') : (Π(b : B a), p ▸ (f b) = g (p ▸ b)) ≃ (p ▸ f = g) :=
|
||
eq.rec_on p (λg, !homotopy_equiv_eq) g
|
||
|
||
|
||
section
|
||
open sigma sigma.ops
|
||
/- more implicit arguments:
|
||
(Π(b : B a), transport C (sigma_eq p idp) (f b) = g (p ▸ b)) ≃
|
||
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (transport B p b)) -/
|
||
definition heq_pi_sigma {C : (Σa, B a) → Type} (p : a = a')
|
||
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
|
||
(Π(b : B a), (sigma_eq p !pathover_tr) ▸ (f b) = g (p ▸ b)) ≃
|
||
(Π(b : B a), p ▸D (f b) = g (p ▸ b)) :=
|
||
eq.rec_on p (λg, !equiv.refl) g
|
||
end
|
||
|
||
/- Functorial action -/
|
||
variables (f0 : A' → A) (f1 : Π(a':A'), B (f0 a') → B' a')
|
||
|
||
/- The functoriality of [forall] is slightly subtle: it is contravariant in the domain type and covariant in the codomain, but the codomain is dependent on the domain. -/
|
||
|
||
definition pi_functor : (Π(a:A), B a) → (Π(a':A'), B' a') := (λg a', f1 a' (g (f0 a')))
|
||
|
||
definition ap_pi_functor {g g' : Π(a:A), B a} (h : g ∼ g')
|
||
: ap (pi_functor f0 f1) (eq_of_homotopy h) = eq_of_homotopy (λa':A', (ap (f1 a') (h (f0 a')))) :=
|
||
begin
|
||
apply (equiv_rect (@apd10 A B g g')), intro p, clear h,
|
||
cases p,
|
||
apply concat,
|
||
exact (ap (ap (pi_functor f0 f1)) (eq_of_homotopy_idp g)),
|
||
apply symm, apply eq_of_homotopy_idp
|
||
end
|
||
|
||
/- Equivalences -/
|
||
|
||
definition is_equiv_pi_functor [instance]
|
||
[H0 : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
|
||
: is_equiv (pi_functor f0 f1) :=
|
||
begin
|
||
apply (adjointify (pi_functor f0 f1) (pi_functor f0⁻¹
|
||
(λ(a : A) (b' : B' (f0⁻¹ a)), transport B (right_inv f0 a) ((f1 (f0⁻¹ a))⁻¹ b')))),
|
||
intro h, apply eq_of_homotopy,
|
||
unfold pi_functor, unfold function.compose, unfold function.id,
|
||
begin
|
||
intro a',
|
||
apply (tr_rev _ (adj f0 a')),
|
||
apply (transport (λx, f1 a' x = h a') (transport_compose B f0 (left_inv f0 a') _)),
|
||
apply (tr_rev (λx, x = h a') (fn_tr_eq_tr_fn _ f1 _)), unfold function.compose,
|
||
apply (tr_rev (λx, left_inv f0 a' ▸ x = h a') (right_inv (f1 _) _)), unfold function.id,
|
||
apply apd
|
||
end,
|
||
begin
|
||
intro h,
|
||
apply eq_of_homotopy, intro a,
|
||
apply (tr_rev (λx, right_inv f0 a ▸ x = h a) (left_inv (f1 _) _)), unfold function.id,
|
||
apply apd
|
||
end
|
||
end
|
||
|
||
definition pi_equiv_pi_of_is_equiv [H : is_equiv f0] [H1 : Πa', @is_equiv (B (f0 a')) (B' a') (f1 a')]
|
||
: (Πa, B a) ≃ (Πa', B' a') :=
|
||
equiv.mk (pi_functor f0 f1) _
|
||
|
||
definition pi_equiv_pi (f0 : A' ≃ A) (f1 : Πa', (B (to_fun f0 a') ≃ B' a'))
|
||
: (Πa, B a) ≃ (Πa', B' a') :=
|
||
pi_equiv_pi_of_is_equiv (to_fun f0) (λa', to_fun (f1 a'))
|
||
|
||
definition pi_equiv_pi_id {P Q : A → Type} (g : Πa, P a ≃ Q a) : (Πa, P a) ≃ (Πa, Q a) :=
|
||
pi_equiv_pi equiv.refl g
|
||
|
||
/- Truncatedness: any dependent product of n-types is an n-type -/
|
||
|
||
open is_trunc
|
||
definition is_trunc_pi (B : A → Type) (n : trunc_index)
|
||
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
|
||
begin
|
||
revert B H,
|
||
eapply (trunc_index.rec_on n),
|
||
{intro B H,
|
||
fapply is_contr.mk,
|
||
intro a, apply center,
|
||
intro f, apply eq_of_homotopy,
|
||
intro x, apply (center_eq (f x))},
|
||
{intro n IH B H,
|
||
fapply is_trunc_succ_intro, intro f g,
|
||
fapply is_trunc_equiv_closed,
|
||
apply equiv.symm, apply eq_equiv_homotopy,
|
||
apply IH,
|
||
intro a,
|
||
show is_trunc n (f a = g a), from
|
||
is_trunc_eq n (f a) (g a)}
|
||
end
|
||
local attribute is_trunc_pi [instance]
|
||
definition is_trunc_eq_pi [instance] [priority 500] (n : trunc_index) (f g : Πa, B a)
|
||
[H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) :=
|
||
begin
|
||
apply is_trunc_equiv_closed_rev,
|
||
apply eq_equiv_homotopy
|
||
end
|
||
|
||
definition is_hprop_pi_eq [instance] [priority 490] (a : A) : is_hprop (Π(a' : A), a = a') :=
|
||
is_hprop_of_imp_is_contr
|
||
( assume (f : Πa', a = a'),
|
||
assert H : is_contr A, from is_contr.mk a f,
|
||
_)
|
||
|
||
/- Symmetry of Π -/
|
||
definition is_equiv_flip [instance] {P : A → A' → Type} : is_equiv (@function.flip A A' P) :=
|
||
begin
|
||
fapply is_equiv.mk,
|
||
exact (@function.flip _ _ (function.flip P)),
|
||
repeat (intro f; apply idp)
|
||
end
|
||
|
||
definition pi_comm_equiv {P : A → A' → Type} : (Πa b, P a b) ≃ (Πb a, P a b) :=
|
||
equiv.mk (@function.flip _ _ P) _
|
||
|
||
end pi
|
||
|
||
attribute pi.is_trunc_pi [instance] [priority 1510]
|