lean2/library/theories/group_theory/cyclic.lean
Haitao Zhang a04c6b0c7d feat(library/theories/group_theory): Group and finite group theories
subgroup.lean : general subgroup theories, quotient group using quot
finsubg.lean : finite subgroups (finset and fintype), Lagrange theorem,
  finite cosets and lcoset_type, normalizer for finite groups, coset product
  and quotient group based on lcoset_type, semidirect product
hom.lean : homomorphism and isomorphism, kernel, first isomorphism theorem
perm.lean : permutation group
cyclic.lean : cyclic subgroup, finite generator, order of generator, sequence and rotation
action.lean : fixed point, action, stabilizer, orbit stabilizer theorem, orbit partition,
  Cayley theorem, action on lcoset, cardinality of permutation group
pgroup.lean : subgroup with order of prime power, Cauchy theorem, first Sylow theorem
2015-07-15 20:02:11 -07:00

449 lines
17 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2015 Haitao Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author : Haitao Zhang
-/
import data algebra.group algebra.group_power .finsubg .hom .perm
open function algebra finset
open eq.ops
namespace group
section cyclic
open nat fin
local attribute madd [reducible]
definition diff [reducible] (i j : nat) :=
if (i < j) then (j - i) else (i - j)
lemma diff_eq_dist {i j : nat} : diff i j = dist i j :=
#nat decidable.by_cases
(λ Plt : i < j,
by rewrite [if_pos Plt, ↑dist, sub_eq_zero_of_le (le_of_lt Plt), zero_add])
(λ Pnlt : ¬ i < j,
by rewrite [if_neg Pnlt, ↑dist, sub_eq_zero_of_le (le_of_not_gt Pnlt)])
lemma diff_eq_max_sub_min {i j : nat} : diff i j = (max i j) - min i j :=
decidable.by_cases
(λ Plt : i < j, begin rewrite [↑max, ↑min, *(if_pos Plt)] end)
(λ Pnlt : ¬ i < j, begin rewrite [↑max, ↑min, *(if_neg Pnlt)] end)
lemma diff_succ {i j : nat} : diff (succ i) (succ j) = diff i j :=
by rewrite [*diff_eq_dist, ↑dist, *succ_sub_succ]
lemma diff_add {i j k : nat} : diff (i + k) (j + k) = diff i j :=
by rewrite [*diff_eq_dist, dist_add_add_right]
lemma diff_le_max {i j : nat} : diff i j ≤ max i j :=
begin rewrite diff_eq_max_sub_min, apply sub_le end
lemma diff_gt_zero_of_ne {i j : nat} : i ≠ j → diff i j > 0 :=
assume Pne, decidable.by_cases
(λ Plt : i < j, begin rewrite [if_pos Plt], apply sub_pos_of_lt Plt end)
(λ Pnlt : ¬ i < j, begin
rewrite [if_neg Pnlt], apply sub_pos_of_lt,
apply lt_of_le_and_ne (nat.le_of_not_gt Pnlt) (ne.symm Pne) end)
variable {A : Type}
open list
variable [ambG : group A]
include ambG
lemma pow_mod {a : A} {n m : nat} : a ^ m = 1 → a ^ n = a ^ (n mod m) :=
assume Pid,
have Pm : a ^ (n div m * m) = 1, from calc
a ^ (n div m * m) = a ^ (m * (n div m)) : {mul.comm (n div m) m}
... = (a ^ m) ^ (n div m) : !pow_mul
... = 1 ^ (n div m) : {Pid}
... = 1 : one_pow (n div m),
calc a ^ n = a ^ (n div m * m + n mod m) : {eq_div_mul_add_mod n m}
... = a ^ (n div m * m) * a ^ (n mod m) : !pow_add
... = 1 * a ^ (n mod m) : {Pm}
... = a ^ (n mod m) : !one_mul
lemma pow_sub_eq_one_of_pow_eq {a : A} {i j : nat} :
a^i = a^j → a^(i - j) = 1 :=
assume Pe, or.elim (lt_or_ge i j)
(assume Piltj, begin rewrite [sub_eq_zero_of_le (nat.le_of_lt Piltj)] end)
(assume Pigej, begin rewrite [pow_sub a Pigej, Pe, mul.right_inv] end)
lemma pow_diff_eq_one_of_pow_eq {a : A} {i j : nat} :
a^i = a^j → a^(diff i j) = 1 :=
assume Pe, decidable.by_cases
(λ Plt : i < j, by rewrite [if_pos Plt]; exact pow_sub_eq_one_of_pow_eq (eq.symm Pe))
(λ Pnlt : ¬ i < j, by rewrite [if_neg Pnlt]; exact pow_sub_eq_one_of_pow_eq Pe)
lemma pow_madd {a : A} {n : nat} {i j : fin (succ n)} :
a^(succ n) = 1 → a^(val (i + j)) = a^i * a^j :=
assume Pe, calc
a^(val (i + j)) = a^((i + j) mod (succ n)) : rfl
... = a^(i + j) : pow_mod Pe
... = a^i * a^j : !pow_add
lemma mk_pow_mod {a : A} {n m : nat} : a ^ (succ m) = 1 → a ^ n = a ^ (mk_mod m n) :=
assume Pe, pow_mod Pe
variable [finA : fintype A]
include finA
open fintype
variable [deceqA : decidable_eq A]
include deceqA
lemma exists_pow_eq_one (a : A) : ∃ n, n < card A ∧ a ^ (succ n) = 1 :=
let f := (λ i : fin (succ (card A)), a ^ i) in
assert Pninj : ¬(injective f), from assume Pinj,
absurd (card_le_of_inj _ _ (exists.intro f Pinj))
(begin rewrite [card_fin], apply not_succ_le_self end),
obtain i₁ P₁, from exists_not_of_not_forall Pninj,
obtain i₂ P₂, from exists_not_of_not_forall P₁,
obtain Pfe Pne, from iff.elim_left not_implies_iff_and_not P₂,
assert Pvne : val i₁ ≠ val i₂, from assume Pveq, absurd (eq_of_veq Pveq) Pne,
exists.intro (pred (diff i₁ i₂)) (begin
rewrite [succ_pred_of_pos (diff_gt_zero_of_ne Pvne)], apply and.intro,
apply lt_of_succ_lt_succ,
rewrite [succ_pred_of_pos (diff_gt_zero_of_ne Pvne)],
apply nat.lt_of_le_of_lt diff_le_max (max_lt i₁ i₂),
apply pow_diff_eq_one_of_pow_eq Pfe
end)
-- Another possibility is to generate a list of powers and use find to get the first
-- unity.
-- The bound on bex is arbitrary as long as it is large enough (at least card A). Making
-- it larger simplifies some proofs, such as a ∈ cyc a.
definition cyc (a : A) : finset A := {x ∈ univ | bex (succ (card A)) (λ n, a ^ n = x)}
definition order (a : A) := card (cyc a)
definition pow_fin (a : A) (n : nat) (i : fin (order a)) := pow a (i + n)
definition cyc_pow_fin (a : A) (n : nat) : finset A := image (pow_fin a n) univ
lemma order_le_group_order {a : A} : order a ≤ card A :=
card_le_card_of_subset !subset_univ
lemma cyc_has_one (a : A) : 1 ∈ cyc a :=
begin
apply mem_filter_of_mem !mem_univ,
existsi 0, apply and.intro,
apply zero_lt_succ,
apply pow_zero
end
lemma order_pos (a : A) : 0 < order a :=
length_pos_of_mem (cyc_has_one a)
lemma cyc_mul_closed (a : A) : finset_mul_closed_on (cyc a) :=
take g h, assume Pgin Phin,
obtain n Plt Pe, from exists_pow_eq_one a,
obtain i Pilt Pig, from of_mem_filter Pgin,
obtain j Pjlt Pjh, from of_mem_filter Phin,
begin
rewrite [-Pig, -Pjh, -pow_add, pow_mod Pe],
apply mem_filter_of_mem !mem_univ,
existsi ((i + j) mod (succ n)), apply and.intro,
apply nat.lt.trans (mod_lt (i+j) !zero_lt_succ) (succ_lt_succ Plt),
apply rfl
end
lemma cyc_has_inv (a : A) : finset_has_inv (cyc a) :=
take g, assume Pgin,
obtain n Plt Pe, from exists_pow_eq_one a,
obtain i Pilt Pig, from of_mem_filter Pgin,
let ni := -(mk_mod n i) in
assert Pinv : g*a^ni = 1, by
rewrite [-Pig, mk_pow_mod Pe, -(pow_madd Pe), add.right_inv],
begin
rewrite [inv_eq_of_mul_eq_one Pinv],
apply mem_filter_of_mem !mem_univ,
existsi ni, apply and.intro,
apply nat.lt.trans (is_lt ni) (succ_lt_succ Plt),
apply rfl
end
lemma self_mem_cyc (a : A) : a ∈ cyc a :=
mem_filter_of_mem !mem_univ
(exists.intro (1 : nat) (and.intro (succ_lt_succ card_pos) !pow_one))
lemma mem_cyc (a : A) : ∀ {n : nat}, a^n ∈ cyc a
| 0 := cyc_has_one a
| (succ n) :=
begin rewrite pow_succ, apply cyc_mul_closed a, exact mem_cyc, apply self_mem_cyc end
lemma order_le {a : A} {n : nat} : a^(succ n) = 1 → order a ≤ succ n :=
assume Pe, let s := image (pow a) (upto (succ n)) in
assert Psub: cyc a ⊆ s, from subset_of_forall
(take g, assume Pgin, obtain i Pilt Pig, from of_mem_filter Pgin, begin
rewrite [-Pig, pow_mod Pe],
apply mem_image_of_mem_of_eq,
apply mem_upto_of_lt (mod_lt i !zero_lt_succ),
exact rfl end),
#nat calc order a ≤ card s : card_le_card_of_subset Psub
... ≤ card (upto (succ n)) : !card_image_le
... = succ n : card_upto (succ n)
lemma pow_ne_of_lt_order {a : A} {n : nat} : succ n < order a → a^(succ n) ≠ 1 :=
assume Plt, not_imp_not_of_imp order_le (nat.not_le_of_gt Plt)
lemma eq_zero_of_pow_eq_one {a : A} : ∀ {n : nat}, a^n = 1 → n < order a → n = 0
| 0 := assume Pe Plt, rfl
| (succ n) := assume Pe Plt, absurd Pe (pow_ne_of_lt_order Plt)
lemma pow_fin_inj (a : A) (n : nat) : injective (pow_fin a n) :=
take i j, assume Peq : a^(i + n) = a^(j + n),
have Pde : a^(diff i j) = 1, from diff_add ▸ pow_diff_eq_one_of_pow_eq Peq,
have Pdz : diff i j = 0, from eq_zero_of_pow_eq_one Pde
(nat.lt_of_le_of_lt diff_le_max (max_lt i j)),
eq_of_veq (eq_of_dist_eq_zero (diff_eq_dist ▸ Pdz))
lemma cyc_eq_cyc (a : A) (n : nat) : cyc_pow_fin a n = cyc a :=
assert Psub : cyc_pow_fin a n ⊆ cyc a, from subset_of_forall
(take g, assume Pgin,
obtain i Pin Pig, from exists_of_mem_image Pgin, by rewrite [-Pig]; apply mem_cyc),
eq_of_card_eq_of_subset (begin apply eq.trans,
apply card_image_eq_of_inj_on,
rewrite [to_set_univ, -set.injective_iff_inj_on_univ], exact pow_fin_inj a n,
rewrite [card_fin] end) Psub
lemma pow_order (a : A) : a^(order a) = 1 :=
obtain i Pin Pone, from exists_of_mem_image (eq.symm (cyc_eq_cyc a 1) ▸ cyc_has_one a),
or.elim (eq_or_lt_of_le (succ_le_of_lt (is_lt i)))
(assume P, P ▸ Pone) (assume P, absurd Pone (pow_ne_of_lt_order P))
lemma eq_one_of_order_eq_one {a : A} : order a = 1 → a = 1 :=
assume Porder,
calc a = a^1 : eq.symm (pow_one a)
... = a^(order a) : Porder
... = 1 : pow_order
lemma order_of_min_pow {a : A} {n : nat}
(Pone : a^(succ n) = 1) (Pmin : ∀ i, i < n → a^(succ i) ≠ 1) : order a = succ n :=
or.elim (eq_or_lt_of_le (order_le Pone)) (λ P, P)
(λ P : order a < succ n, begin
assert Pn : a^(order a) ≠ 1,
rewrite [-(succ_pred_of_pos (order_pos a))],
apply Pmin, apply nat.lt_of_succ_lt_succ,
rewrite [succ_pred_of_pos !order_pos], assumption,
exact absurd (pow_order a) Pn end)
lemma order_dvd_of_pow_eq_one {a : A} {n : nat} (Pone : a^n = 1) : order a n :=
assert Pe : a^(n mod order a) = 1, from
begin
revert Pone,
rewrite [eq_div_mul_add_mod n (order a) at {1}, pow_add, mul.comm _ (order a), pow_mul, pow_order, one_pow, one_mul],
intros, assumption
end,
dvd_of_mod_eq_zero (eq_zero_of_pow_eq_one Pe (mod_lt n !order_pos))
definition cyc_is_finsubg [instance] (a : A) : is_finsubg (cyc a) :=
is_finsubg.mk (cyc_has_one a) (cyc_mul_closed a) (cyc_has_inv a)
lemma order_dvd_group_order (a : A) : order a card A :=
dvd.intro (eq.symm (!mul.comm ▸ lagrange_theorem (subset_univ (cyc a))))
definition pow_fin' (a : A) (i : fin (succ (pred (order a)))) := pow a i
local attribute group_of_add_group [instance]
lemma pow_fin_hom (a : A) : homomorphic (pow_fin' a) :=
take i j,
begin
rewrite [↑pow_fin'],
apply pow_madd,
rewrite [succ_pred_of_pos !order_pos],
exact pow_order a
end
definition pow_fin_is_iso (a : A) : is_iso_class (pow_fin' a) :=
is_iso_class.mk (pow_fin_hom a)
(begin rewrite [↑pow_fin', succ_pred_of_pos !order_pos], exact pow_fin_inj a 0 end)
end cyclic
section rot
open nat list
open fin fintype list
lemma dmap_map_lift {n : nat} : ∀ l : list nat, (∀ i, i ∈ l → i < n) → dmap (λ i, i < succ n) mk l = map lift_succ (dmap (λ i, i < n) mk l)
| [] := assume Plt, rfl
| (i::l) := assume Plt, begin
rewrite [@dmap_cons_of_pos _ _ (λ i, i < succ n) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons],
congruence,
apply dmap_map_lift,
intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end
lemma upto_succ (n : nat) : upto (succ n) = maxi :: map lift_succ (upto n) :=
begin
rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < succ n) _ _ _ (nat.self_lt_succ n)],
congruence,
apply dmap_map_lift, apply @list.lt_of_mem_upto
end
definition upto_step : ∀ {n : nat}, fin.upto (succ n) = (map succ (upto n))++[zero n]
| 0 := rfl
| (succ n) := begin rewrite [upto_succ n, map_cons, append_cons, succ_max, upto_succ, -lift_zero],
congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ (zero n)), -map_append, -upto_step] end
section
local attribute group_of_add_group [instance]
local infix ^ := algebra.pow
lemma pow_eq_mul {n : nat} {i : fin (succ n)} : ∀ {k : nat}, i^k = mk_mod n (i*k)
| 0 := by rewrite [pow_zero]
| (succ k) := begin
assert Psucc : i^(succ k) = madd (i^k) i, apply pow_succ,
rewrite [Psucc, pow_eq_mul],
apply eq_of_veq,
rewrite [mul_succ, val_madd, ↑mk_mod, mod_add_mod]
end
end
definition rotl : ∀ {n : nat} m : nat, fin n → fin n
| 0 := take m i, elim0 i
| (succ n) := take m, madd (mk_mod n (n*m))
definition rotr : ∀ {n : nat} m : nat, fin n → fin n
| (0:nat) := take m i, elim0 i
| (nat.succ n) := take m, madd (-(mk_mod n (n*m)))
lemma rotl_succ' {n m : nat} : rotl m = madd (mk_mod n (n*m)) := rfl
lemma rotl_zero : ∀ {n : nat}, @rotl n 0 = id
| 0 := funext take i, elim0 i
| (succ n) := funext take i, zero_add i
lemma rotl_id : ∀ {n : nat}, @rotl n n = id
| 0 := funext take i, elim0 i
| (succ n) :=
assert P : mk_mod n (n * succ n) = mk_mod n 0,
from eq_of_veq !mul_mod_left,
begin rewrite [rotl_succ', P], apply rotl_zero end
lemma rotl_to_zero {n i : nat} : rotl i (mk_mod n i) = zero n :=
eq_of_veq begin rewrite [↑rotl, val_madd], esimp [mk_mod], rewrite [ mod_add_mod, add_mod_mod, -succ_mul, mul_mod_right] end
lemma rotl_compose : ∀ {n : nat} {j k : nat}, (@rotl n j) ∘ (rotl k) = rotl (j + k)
| 0 := take j k, funext take i, elim0 i
| (succ n) := take j k, funext take i, eq.symm begin
rewrite [*rotl_succ', mul.left_distrib, -(@madd_mk_mod n (n*j)), madd_assoc],
end
lemma rotr_rotl : ∀ {n : nat} (m : nat) {i : fin n}, rotr m (rotl m i) = i
| 0 := take m i, elim0 i
| (nat.succ n) := take m i, calc (-(mk_mod n (n*m))) + ((mk_mod n (n*m)) + i) = i : by rewrite neg_add_cancel_left
lemma rotl_rotr : ∀ {n : nat} (m : nat), (@rotl n m) ∘ (rotr m) = id
| 0 := take m, funext take i, elim0 i
| (nat.succ n) := take m, funext take i, calc (mk_mod n (n*m)) + (-(mk_mod n (n*m)) + i) = i : add_neg_cancel_left
lemma rotl_succ {n : nat} : (rotl 1) ∘ (@succ n) = lift_succ :=
funext (take i, eq_of_veq (begin rewrite [↑compose, ↑rotl, ↑madd, mul_one n, ↑mk_mod, mod_add_mod, ↑lift_succ, val_succ, -succ_add_eq_succ_add, add_mod_self_left, mod_eq_of_lt (lt.trans (is_lt i) !lt_succ_self), -val_lift] end))
definition list.rotl {A : Type} : ∀ l : list A, list A
| [] := []
| (a::l) := l++[a]
lemma rotl_cons {A : Type} {a : A} {l} : list.rotl (a::l) = l++[a] := rfl
lemma rotl_map {A B : Type} {f : A → B} : ∀ {l : list A}, list.rotl (map f l) = map f (list.rotl l)
| [] := rfl
| (a::l) := begin rewrite [map_cons, *rotl_cons, map_append] end
lemma rotl_eq_rotl : ∀ {n : nat}, map (rotl 1) (upto n) = list.rotl (upto n)
| 0 := rfl
| (succ n) := begin
rewrite [upto_step at {1}, upto_succ, rotl_cons, map_append],
congruence,
rewrite [map_map], congruence, exact rotl_succ,
rewrite [map_singleton], congruence, rewrite [↑rotl, mul_one n, ↑mk_mod, ↑zero, ↑maxi, ↑madd],
congruence, rewrite [ mod_add_mod, nat.add_zero, mod_eq_of_lt !lt_succ_self ]
end
definition seq [reducible] (A : Type) (n : nat) := fin n → A
variable {A : Type}
definition rotl_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotl m)
definition rotr_fun {n : nat} (m : nat) (f : seq A n) : seq A n := f ∘ (rotr m)
lemma rotl_seq_zero {n : nat} : rotl_fun 0 = @id (seq A n) :=
funext take f, begin rewrite [↑rotl_fun, rotl_zero] end
lemma rotl_seq_ne_id : ∀ {n : nat}, (∃ a b : A, a ≠ b) → ∀ i, i < n → rotl_fun (succ i) ≠ (@id (seq A (succ n)))
| 0 := assume Pex, take i, assume Piltn, absurd Piltn !not_lt_zero
| (succ n) := assume Pex, obtain a b Pne, from Pex, take i, assume Pilt,
let f := (λ j : fin (succ (succ n)), if j = zero (succ n) then a else b),
fi := mk_mod (succ n) (succ i) in
have Pfne : rotl_fun (succ i) f fi ≠ f fi,
from begin rewrite [↑rotl_fun, rotl_to_zero, mk_mod_of_lt (succ_lt_succ Pilt), if_pos rfl, if_neg mk_succ_ne_zero], assumption end,
have P : rotl_fun (succ i) f ≠ f, from
assume Peq, absurd (congr_fun Peq fi) Pfne,
assume Peq, absurd (congr_fun Peq f) P
lemma rotr_rotl_fun {n : nat} (m : nat) (f : seq A n) : rotr_fun m (rotl_fun m f) = f :=
calc f ∘ (rotl m) ∘ (rotr m) = f ∘ ((rotl m) ∘ (rotr m)) : compose.assoc
... = f ∘ id : {rotl_rotr m}
lemma rotl_fun_inj {n : nat} {m : nat} : @injective (seq A n) (seq A n) (rotl_fun m) :=
injective_of_has_left_inverse (exists.intro (rotr_fun m) (rotr_rotl_fun m))
lemma seq_rotl_eq_list_rotl {n : nat} (f : seq A n) :
fun_to_list (rotl_fun 1 f) = list.rotl (fun_to_list f) :=
begin
rewrite [↑fun_to_list, ↑rotl_fun, -map_map, rotl_map],
congruence, exact rotl_eq_rotl
end
end rot
section rotg
open nat fin fintype
definition rotl_perm [reducible] (A : Type) [finA : fintype A] [deceqA : decidable_eq A] (n : nat) (m : nat) : perm (seq A n) :=
perm.mk (rotl_fun m) rotl_fun_inj
variable {A : Type}
variable [finA : fintype A]
include finA
variable [deceqA : decidable_eq A]
include deceqA
variable {n : nat}
lemma rotl_perm_mul {i j : nat} : (rotl_perm A n i) * (rotl_perm A n j) = rotl_perm A n (j+i) :=
eq_of_feq (funext take f, calc
f ∘ (rotl j) ∘ (rotl i) = f ∘ ((rotl j) ∘ (rotl i)) : compose.assoc
... = f ∘ (rotl (j+i)) : rotl_compose)
lemma rotl_perm_pow_eq : ∀ {i : nat}, (rotl_perm A n 1) ^ i = rotl_perm A n i
| 0 := begin rewrite [pow_zero, ↑rotl_perm, perm_one, -eq_iff_feq], esimp, rewrite rotl_seq_zero end
| (succ i) := begin rewrite [pow_succ, rotl_perm_pow_eq, rotl_perm_mul, one_add] end
lemma rotl_perm_pow_eq_one : (rotl_perm A n 1) ^ n = 1 :=
eq.trans rotl_perm_pow_eq (eq_of_feq begin esimp [rotl_perm], rewrite [↑rotl_fun, rotl_id] end)
lemma rotl_perm_mod {i : nat} : rotl_perm A n i = rotl_perm A n (i mod n) :=
calc rotl_perm A n i = (rotl_perm A n 1) ^ i : rotl_perm_pow_eq
... = (rotl_perm A n 1) ^ (i mod n) : pow_mod rotl_perm_pow_eq_one
... = rotl_perm A n (i mod n) : rotl_perm_pow_eq
-- needs A to have at least two elements!
lemma rotl_perm_pow_ne_one (Pex : ∃ a b : A, a ≠ b) : ∀ i, i < n → (rotl_perm A (succ n) 1)^(succ i) ≠ 1 :=
take i, assume Piltn, begin
intro P, revert P, rewrite [rotl_perm_pow_eq, -eq_iff_feq, perm_one, *perm.f_mk],
intro P, exact absurd P (rotl_seq_ne_id Pex i Piltn)
end
lemma rotl_perm_order (Pex : ∃ a b : A, a ≠ b) : order (rotl_perm A (succ n) 1) = (succ n) :=
order_of_min_pow rotl_perm_pow_eq_one (rotl_perm_pow_ne_one Pex)
end rotg
end group