lean2/library/struc/relation.lean
Leonardo de Moura 8743394627 refactor(kernel/inductive): replace recursor name, use '.rec' instead of '_rec'
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
2014-09-04 15:04:57 -07:00

199 lines
6.8 KiB
Text

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Jeremy Avigad
-- struc.relation
-- ==============
import logic.core.prop
-- General properties of relations
-- -------------------------------
namespace relation
abbreviation reflexive {T : Type} (R : T → T → Type) : Type := ∀x, R x x
abbreviation symmetric {T : Type} (R : T → T → Type) : Type := ∀⦃x y⦄, R x y → R y x
abbreviation transitive {T : Type} (R : T → T → Type) : Type := ∀⦃x y z⦄, R x y → R y z → R x z
inductive is_reflexive {T : Type} (R : T → T → Type) : Prop :=
is_reflexive_mk : reflexive R → is_reflexive R
namespace is_reflexive
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_reflexive R) : reflexive R :=
is_reflexive.rec (λu, u) C
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_reflexive R} : reflexive R :=
is_reflexive.rec (λu, u) C
end is_reflexive
inductive is_symmetric {T : Type} (R : T → T → Type) : Prop :=
is_symmetric_mk : symmetric R → is_symmetric R
namespace is_symmetric
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_symmetric R) : symmetric R :=
is_symmetric.rec (λu, u) C
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_symmetric R} : symmetric R :=
is_symmetric.rec (λu, u) C
end is_symmetric
inductive is_transitive {T : Type} (R : T → T → Type) : Prop :=
is_transitive_mk : transitive R → is_transitive R
namespace is_transitive
abbreviation app ⦃T : Type⦄ {R : T → T → Type} (C : is_transitive R) : transitive R :=
is_transitive.rec (λu, u) C
abbreviation infer ⦃T : Type⦄ (R : T → T → Type) {C : is_transitive R} : transitive R :=
is_transitive.rec (λu, u) C
end is_transitive
inductive is_equivalence {T : Type} (R : T → T → Type) : Prop :=
is_equivalence_mk : is_reflexive R → is_symmetric R → is_transitive R → is_equivalence R
namespace is_equivalence
theorem is_reflexive {T : Type} (R : T → T → Type) {C : is_equivalence R} : is_reflexive R :=
is_equivalence.rec (λx y z, x) C
theorem is_symmetric {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_symmetric R :=
is_equivalence.rec (λx y z, y) C
theorem is_transitive {T : Type} {R : T → T → Type} {C : is_equivalence R} : is_transitive R :=
is_equivalence.rec (λx y z, z) C
end is_equivalence
instance is_equivalence.is_reflexive
instance is_equivalence.is_symmetric
instance is_equivalence.is_transitive
-- partial equivalence relation
inductive is_PER {T : Type} (R : T → T → Type) : Prop :=
is_PER_mk : is_symmetric R → is_transitive R → is_PER R
namespace is_PER
theorem is_symmetric {T : Type} {R : T → T → Type} {C : is_PER R} : is_symmetric R :=
is_PER.rec (λx y, x) C
theorem is_transitive {T : Type} {R : T → T → Type} {C : is_PER R} : is_transitive R :=
is_PER.rec (λx y, y) C
end is_PER
instance is_PER.is_symmetric
instance is_PER.is_transitive
-- Congruence for unary and binary functions
-- -----------------------------------------
inductive congruence {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) : Prop :=
congruence_mk : (∀x y, R1 x y → R2 (f x) (f y)) → congruence R1 R2 f
-- for binary functions
inductive congruence2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
{T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop :=
congruence2_mk : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) →
congruence2 R1 R2 R3 f
namespace congruence
abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{f : T1 → T2} (C : congruence R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
congruence.rec (λu, u) C x y
theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop)
(f : T1 → T2) {C : congruence R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) :=
congruence.rec (λu, u) C x y
abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{f : T1 → T2 → T3} (C : congruence2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ :
R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) :=
congruence2.rec (λu, u) C x1 y1 x2 y2
-- ### general tools to build instances
theorem compose
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{g : T2 → T3} (C2 : congruence R2 R3 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f : T1 → T2} (C1 : congruence R1 R2 f) :
congruence R1 R3 (λx, g (f x)) :=
congruence_mk (λx1 x2 H, app C2 (app C1 H))
theorem compose21
{T2 : Type} {R2 : T2 → T2 → Prop}
{T3 : Type} {R3 : T3 → T3 → Prop}
{T4 : Type} {R4 : T4 → T4 → Prop}
{g : T2 → T3 → T4} (C3 : congruence2 R2 R3 R4 g)
⦃T1 : Type⦄ {R1 : T1 → T1 → Prop}
{f1 : T1 → T2} (C1 : congruence R1 R2 f1)
{f2 : T1 → T3} (C2 : congruence R1 R3 f2) :
congruence R1 R4 (λx, g (f1 x) (f2 x)) :=
congruence_mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H))
theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2)
⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
congruence R1 R2 (λu : T1, c) :=
congruence_mk (λx y H1, H c)
end congruence
-- Notice these can't be in the congruence namespace, if we want it visible without
-- using congruence.
theorem congruence_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop)
{C : is_reflexive R2} ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) :
congruence R1 R2 (λu : T1, c) :=
congruence.const R2 (is_reflexive.app C) R1 c
theorem congruence_trivial [instance] {T : Type} (R : T → T → Prop) :
congruence R R (λu, u) :=
congruence_mk (λx y H, H)
-- Relations that can be coerced to functions / implications
-- ---------------------------------------------------------
inductive mp_like {R : Type → Type → Prop} {a b : Type} (H : R a b) : Prop :=
mp_like_mk {} : (a → b) → @mp_like R a b H
namespace mp_like
definition app {R : Type → Type → Prop} {a : Type} {b : Type} {H : R a b}
(C : mp_like H) : a → b := mp_like.rec (λx, x) C
definition infer ⦃R : Type → Type → Prop⦄ {a : Type} {b : Type} (H : R a b)
{C : mp_like H} : a → b := mp_like.rec (λx, x) C
end mp_like
-- Notation for operations on general symbols
-- ------------------------------------------
-- e.g. if R is an instance of the class, then "refl R" is reflexivity for the class
definition rel_refl := is_reflexive.infer
definition rel_symm := is_symmetric.infer
definition rel_trans := is_transitive.infer
definition rel_mp := mp_like.infer
end relation