569 lines
22 KiB
Text
569 lines
22 KiB
Text
/-
|
|
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
Authors: Robert Lewis
|
|
-/
|
|
import algebra.ordered_ring algebra.field
|
|
open eq eq.ops
|
|
|
|
structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A
|
|
|
|
section linear_ordered_field
|
|
|
|
variable {A : Type}
|
|
variables [s : linear_ordered_field A] {a b c d : A}
|
|
include s
|
|
|
|
-- helpers for following
|
|
theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) :=
|
|
calc
|
|
a * 0 = 0 : mul_zero
|
|
... < 1 : zero_lt_one
|
|
... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) :=
|
|
calc
|
|
a * 0 = 0 : mul_zero
|
|
... < 1 : zero_lt_one
|
|
... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H)
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
theorem one_div_pos_of_pos (H : 0 < a) : 0 < 1 / a :=
|
|
lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H)
|
|
|
|
theorem one_div_neg_of_neg (H : a < 0) : 1 / a < 0 :=
|
|
gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H)
|
|
|
|
|
|
theorem le_mul_of_ge_one_right (Hb : b ≥ 0) (H : a ≥ 1) : b ≤ b * a :=
|
|
mul_one _ ▸ (mul_le_mul_of_nonneg_left H Hb)
|
|
|
|
theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a :=
|
|
mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb)
|
|
|
|
theorem one_le_div_iff_le (a : A) {b : A} (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a :=
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
iff.intro
|
|
(assume H : 1 ≤ a / b,
|
|
calc
|
|
b = b : refl
|
|
... ≤ b * (a / b) : le_mul_of_ge_one_right (le_of_lt Hb) H
|
|
... = a : mul_div_cancel' Hb')
|
|
(assume H : b ≤ a,
|
|
have Hbinv : 1 / b > 0, from one_div_pos_of_pos Hb, calc
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv)
|
|
... = a / b : div_eq_mul_one_div)
|
|
|
|
theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a :=
|
|
(iff.mp (!one_le_div_iff_le Hb)) H
|
|
|
|
theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b :=
|
|
(iff.mpr (!one_le_div_iff_le Hb)) H
|
|
|
|
theorem one_lt_div_iff_lt (a : A) {b : A} (Hb : b > 0) : 1 < a / b ↔ b < a :=
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
iff.intro
|
|
(assume H : 1 < a / b,
|
|
calc
|
|
b < b * (a / b) : lt_mul_of_gt_one_right Hb H
|
|
... = a : mul_div_cancel' Hb')
|
|
(assume H : b < a,
|
|
have Hbinv : 1 / b > 0, from one_div_pos_of_pos Hb, calc
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv
|
|
... = a / b : div_eq_mul_one_div)
|
|
|
|
theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a :=
|
|
(iff.mp (!one_lt_div_iff_lt Hb)) H
|
|
|
|
theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b :=
|
|
(iff.mpr (!one_lt_div_iff_lt Hb)) H
|
|
|
|
theorem exists_lt (a : A) : ∃ x, x < a :=
|
|
have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one,
|
|
exists.intro _ H
|
|
|
|
theorem exists_gt (a : A) : ∃ x, x > a :=
|
|
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
|
|
exists.intro _ H
|
|
|
|
-- the following theorems amount to four iffs, for <, ≤, ≥, >.
|
|
|
|
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
|
!div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
|
|
|
theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne.symm (ne_of_lt Hc))
|
|
... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hc))
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b :=
|
|
!div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc
|
|
|
|
theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne.symm (ne_of_lt Hc))
|
|
... < b * (1 / c) : mul_lt_mul_of_pos_right H (one_div_pos_of_pos Hc)
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_le_of_div_le_of_neg (Hc : c < 0) (H : b / c ≤ a) : a * c ≤ b :=
|
|
!div_mul_cancel (ne_of_lt Hc) ▸ mul_le_mul_of_nonpos_right H (le_of_lt Hc)
|
|
|
|
theorem div_le_of_mul_le_of_neg (Hc : c < 0) (H : a * c ≤ b) : b / c ≤ a :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne_of_lt Hc)
|
|
... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right H (le_of_lt (one_div_neg_of_neg Hc))
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem mul_lt_of_gt_div_of_neg (Hc : c < 0) (H : a > b / c) : a * c < b :=
|
|
!div_mul_cancel (ne_of_lt Hc) ▸ mul_lt_mul_of_neg_right H Hc
|
|
|
|
theorem div_lt_of_mul_lt_of_pos (Hc : c > 0) (H : b < a * c) : b / c < a :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne_of_gt Hc)
|
|
... > b * (1 / c) : mul_lt_mul_of_pos_right H (one_div_pos_of_pos Hc)
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem div_lt_of_mul_gt_of_neg (Hc : c < 0) (H : a * c < b) : b / c < a :=
|
|
calc
|
|
a = a * c * (1 / c) : !mul_mul_div (ne_of_lt Hc)
|
|
... > b * (1 / c) : mul_lt_mul_of_neg_right H (one_div_neg_of_neg Hc)
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
theorem div_le_of_le_mul (Hb : b > 0) (H : a ≤ b * c) : a / b ≤ c :=
|
|
calc
|
|
a / b = a * (1 / b) : div_eq_mul_one_div
|
|
... ≤ (b * c) * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hb))
|
|
... = (b * c) / b : div_eq_mul_one_div
|
|
... = c : mul_div_cancel_left (ne.symm (ne_of_lt Hb))
|
|
|
|
theorem le_mul_of_div_le (Hc : c > 0) (H : a / c ≤ b) : a ≤ b * c :=
|
|
calc
|
|
a = a / c * c : !div_mul_cancel (ne.symm (ne_of_lt Hc))
|
|
... ≤ b * c : mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
|
|
|
-- following these in the isabelle file, there are 8 biconditionals for the above with - signs
|
|
-- skipping for now
|
|
|
|
theorem mul_sub_mul_div_mul_neg (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c < b / d) :
|
|
(a * d - b * c) / (c * d) < 0 :=
|
|
have H1 : a / c - b / d < 0, from calc
|
|
a / c - b / d < b / d - b / d : sub_lt_sub_right H
|
|
... = 0 : sub_self,
|
|
calc
|
|
0 > a / c - b / d : H1
|
|
... = (a * d - c * b) / (c * d) : !div_sub_div Hc Hd
|
|
... = (a * d - b * c) / (c * d) : mul.comm
|
|
|
|
theorem mul_sub_mul_div_mul_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0) (H : a / c ≤ b / d) :
|
|
(a * d - b * c) / (c * d) ≤ 0 :=
|
|
have H1 : a / c - b / d ≤ 0, from calc
|
|
a / c - b / d ≤ b / d - b / d : sub_le_sub_right H
|
|
... = 0 : sub_self,
|
|
calc
|
|
0 ≥ a / c - b / d : H1
|
|
... = (a * d - c * b) / (c * d) : !div_sub_div Hc Hd
|
|
... = (a * d - b * c) / (c * d) : mul.comm
|
|
|
|
theorem div_lt_div_of_mul_sub_mul_div_neg (Hc : c ≠ 0) (Hd : d ≠ 0)
|
|
(H : (a * d - b * c) / (c * d) < 0) : a / c < b / d :=
|
|
have H1 : (a * d - c * b) / (c * d) < 0, by rewrite [mul.comm c b]; exact H,
|
|
have H2 : a / c - b / d < 0, by rewrite [!div_sub_div Hc Hd]; exact H1,
|
|
have H3 : a / c - b / d + b / d < 0 + b / d, from add_lt_add_right H2 _,
|
|
begin rewrite [zero_add at H3, sub_eq_add_neg at H3, neg_add_cancel_right at H3], exact H3 end
|
|
|
|
theorem div_le_div_of_mul_sub_mul_div_nonpos (Hc : c ≠ 0) (Hd : d ≠ 0)
|
|
(H : (a * d - b * c) / (c * d) ≤ 0) : a / c ≤ b / d :=
|
|
have H1 : (a * d - c * b) / (c * d) ≤ 0, by rewrite [mul.comm c b]; exact H,
|
|
have H2 : a / c - b / d ≤ 0, by rewrite [!div_sub_div Hc Hd]; exact H1,
|
|
have H3 : a / c - b / d + b / d ≤ 0 + b / d, from add_le_add_right H2 _,
|
|
begin rewrite [zero_add at H3, sub_eq_add_neg at H3, neg_add_cancel_right at H3], exact H3 end
|
|
|
|
theorem div_pos_of_pos_of_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_pos,
|
|
exact Ha,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonneg_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 ≤ a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonneg,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_neg_of_neg_of_pos (Ha : a < 0) (Hb : 0 < b) : a / b < 0:=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_neg_of_neg_of_pos,
|
|
exact Ha,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonpos_of_nonpos_of_pos (Ha : a ≤ 0) (Hb : 0 < b) : a / b ≤ 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonpos_of_nonpos_of_nonneg,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_neg_of_pos_of_neg (Ha : 0 < a) (Hb : b < 0) : a / b < 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_neg_of_pos_of_neg,
|
|
exact Ha,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonpos_of_nonneg_of_neg (Ha : 0 ≤ a) (Hb : b < 0) : a / b ≤ 0 :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonpos_of_nonneg_of_nonpos,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_pos_of_neg_of_neg (Ha : a < 0) (Hb : b < 0) : 0 < a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_pos_of_neg_of_neg,
|
|
exact Ha,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_nonneg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : 0 ≤ a / b :=
|
|
begin
|
|
rewrite div_eq_mul_one_div,
|
|
apply mul_nonneg_of_nonpos_of_nonpos,
|
|
exact Ha,
|
|
apply le_of_lt,
|
|
apply one_div_neg_of_neg,
|
|
exact Hb
|
|
end
|
|
|
|
theorem div_lt_div_of_lt_of_pos (H : a < b) (Hc : 0 < c) : a / c < b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_lt_mul_of_pos_right H (one_div_pos_of_pos Hc)
|
|
end
|
|
|
|
theorem div_le_div_of_le_of_pos (H : a ≤ b) (Hc : 0 < c) : a / c ≤ b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_le_mul_of_nonneg_right H (le_of_lt (one_div_pos_of_pos Hc))
|
|
end
|
|
|
|
theorem div_lt_div_of_lt_of_neg (H : b < a) (Hc : c < 0) : a / c < b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_lt_mul_of_neg_right H (one_div_neg_of_neg Hc)
|
|
end
|
|
|
|
theorem div_le_div_of_le_of_neg (H : b ≤ a) (Hc : c < 0) : a / c ≤ b / c :=
|
|
begin
|
|
rewrite [{a/c}div_eq_mul_one_div, {b/c}div_eq_mul_one_div],
|
|
exact mul_le_mul_of_nonpos_right H (le_of_lt (one_div_neg_of_neg Hc))
|
|
end
|
|
|
|
theorem two_pos : (1 : A) + 1 > 0 :=
|
|
add_pos zero_lt_one zero_lt_one
|
|
|
|
theorem one_add_one_ne_zero : 1 + 1 ≠ (0:A) :=
|
|
ne.symm (ne_of_lt two_pos)
|
|
|
|
theorem two_ne_zero : 2 ≠ (0:A) :=
|
|
by unfold bit0; apply one_add_one_ne_zero
|
|
|
|
theorem add_halves (a : A) : a / 2 + a / 2 = a :=
|
|
calc
|
|
a / 2 + a / 2 = (a + a) / 2 : by rewrite div_add_div_same
|
|
... = (a * 1 + a * 1) / 2 : by rewrite mul_one
|
|
... = (a * (1 + 1)) / 2 : by rewrite left_distrib
|
|
... = (a * 2) / 2 : by rewrite one_add_one_eq_two
|
|
... = a : by rewrite [@mul_div_cancel A _ _ _ two_ne_zero]
|
|
|
|
theorem sub_self_div_two (a : A) : a - a / 2 = a / 2 :=
|
|
by rewrite [-{a}add_halves at {1}, add_sub_cancel]
|
|
|
|
theorem add_midpoint {a b : A} (H : a < b) : a + (b - a) / 2 < b :=
|
|
begin
|
|
rewrite [-div_sub_div_same, sub_eq_add_neg, {b / 2 + _}add.comm, -add.assoc, -sub_eq_add_neg],
|
|
apply add_lt_of_lt_sub_right,
|
|
rewrite *sub_self_div_two,
|
|
apply div_lt_div_of_lt_of_pos H two_pos
|
|
end
|
|
|
|
theorem div_two_sub_self (a : A) : a / 2 - a = - (a / 2) :=
|
|
by rewrite [-{a}add_halves at {2}, sub_add_eq_sub_sub, sub_self, zero_sub]
|
|
|
|
theorem add_self_div_two (a : A) : (a + a) / 2 = a :=
|
|
symm (iff.mpr (!eq_div_iff_mul_eq (ne_of_gt (add_pos zero_lt_one zero_lt_one)))
|
|
(by krewrite [left_distrib, *mul_one]))
|
|
|
|
theorem two_gt_one : (2:A) > 1 :=
|
|
calc (2:A) = 1+1 : one_add_one_eq_two
|
|
... > 1+0 : add_lt_add_left zero_lt_one
|
|
... = 1 : add_zero
|
|
|
|
theorem two_ge_one : (2:A) ≥ 1 :=
|
|
le_of_lt two_gt_one
|
|
|
|
theorem four_pos : (4 : A) > 0 := add_pos two_pos two_pos
|
|
|
|
theorem mul_le_mul_of_mul_div_le (H : a * (b / c) ≤ d) (Hc : c > 0) : b * a ≤ d * c :=
|
|
begin
|
|
rewrite [-mul_div_assoc at H, mul.comm b],
|
|
apply le_mul_of_div_le Hc H
|
|
end
|
|
|
|
theorem div_two_lt_of_pos (H : a > 0) : a / (1 + 1) < a :=
|
|
have Ha : a / (1 + 1) > 0, from div_pos_of_pos_of_pos H (add_pos zero_lt_one zero_lt_one),
|
|
calc
|
|
a / (1 + 1) < a / (1 + 1) + a / (1 + 1) : lt_add_of_pos_left Ha
|
|
... = a : add_halves
|
|
|
|
theorem div_mul_le_div_mul_of_div_le_div_pos {e : A} (Hb : b ≠ 0) (Hd : d ≠ 0) (H : a / b ≤ c / d)
|
|
(He : e > 0) : a / (b * e) ≤ c / (d * e) :=
|
|
begin
|
|
rewrite [!field.div_mul_eq_div_mul_one_div Hb (ne_of_gt He),
|
|
!field.div_mul_eq_div_mul_one_div Hd (ne_of_gt He)],
|
|
apply mul_le_mul_of_nonneg_right H,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos He
|
|
end
|
|
|
|
theorem exists_add_lt_and_pos_of_lt (H : b < a) : ∃ c : A, b + c < a ∧ c > 0 :=
|
|
exists.intro ((a - b) / (1 + 1))
|
|
(and.intro (have H2 : a + a > (b + b) + (a - b), from calc
|
|
a + a > b + a : add_lt_add_right H
|
|
... = b + a + b - b : add_sub_cancel
|
|
... = b + b + a - b : add.right_comm
|
|
... = (b + b) + (a - b) : add_sub,
|
|
have H3 : (a + a) / 2 > ((b + b) + (a - b)) / 2,
|
|
from div_lt_div_of_lt_of_pos H2 two_pos,
|
|
by rewrite [one_add_one_eq_two, sub_eq_add_neg, add_self_div_two at H3, -div_add_div_same at H3, add_self_div_two at H3];
|
|
exact H3)
|
|
(div_pos_of_pos_of_pos (iff.mpr !sub_pos_iff_lt H) two_pos))
|
|
|
|
theorem ge_of_forall_ge_sub {a b : A} (H : ∀ ε : A, ε > 0 → a ≥ b - ε) : a ≥ b :=
|
|
begin
|
|
apply le_of_not_gt,
|
|
intro Hb,
|
|
cases exists_add_lt_and_pos_of_lt Hb with [c, Hc],
|
|
let Hc' := H c (and.right Hc),
|
|
apply (not_le_of_gt (and.left Hc)) (iff.mpr !le_add_iff_sub_right_le Hc')
|
|
end
|
|
|
|
end linear_ordered_field
|
|
|
|
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,
|
|
decidable_linear_ordered_comm_ring A :=
|
|
(inv_zero : inv zero = zero)
|
|
|
|
section discrete_linear_ordered_field
|
|
|
|
variable {A : Type}
|
|
variables [s : discrete_linear_ordered_field A] {a b c : A}
|
|
include s
|
|
|
|
definition dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) :=
|
|
take x y,
|
|
decidable.by_cases
|
|
(assume H : x < y, decidable.inr (ne_of_lt H))
|
|
(assume H : ¬ x < y,
|
|
decidable.by_cases
|
|
(assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H')))
|
|
(assume H' : ¬ y < x,
|
|
decidable.inl (le.antisymm (le_of_not_gt H') (le_of_not_gt H))))
|
|
|
|
definition discrete_linear_ordered_field.to_discrete_field [trans_instance] : discrete_field A :=
|
|
⦃ discrete_field, s, has_decidable_eq := dec_eq_of_dec_lt⦄
|
|
|
|
theorem pos_of_one_div_pos (H : 0 < 1 / a) : 0 < a :=
|
|
have H1 : 0 < 1 / (1 / a), from one_div_pos_of_pos H,
|
|
have H2 : 1 / a ≠ 0, from
|
|
(assume H3 : 1 / a = 0,
|
|
have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ !div_zero,
|
|
absurd H4 (ne.symm (ne_of_lt H1))),
|
|
(division_ring.one_div_one_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1
|
|
|
|
theorem neg_of_one_div_neg (H : 1 / a < 0) : a < 0 :=
|
|
have H1 : 0 < - (1 / a), from neg_pos_of_neg H,
|
|
have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H),
|
|
have H2 : 0 < 1 / (-a), from (division_ring.one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1,
|
|
have H3 : 0 < -a, from pos_of_one_div_pos H2,
|
|
neg_of_neg_pos H3
|
|
|
|
theorem le_of_one_div_le_one_div (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
|
have Hb : 0 < b, from pos_of_one_div_pos (calc
|
|
0 < 1 / a : one_div_pos_of_pos H
|
|
... ≤ 1 / b : Hl),
|
|
have H' : 1 ≤ a / b, from (calc
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_left Hl (le_of_lt H)
|
|
... = a / b : div_eq_mul_one_div
|
|
), le_of_one_le_div Hb H'
|
|
|
|
theorem le_of_one_div_le_one_div_of_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
|
have Ha : a ≠ 0, from ne_of_lt (neg_of_one_div_neg (calc
|
|
1 / a ≤ 1 / b : Hl
|
|
... < 0 : one_div_neg_of_neg H)),
|
|
have H' : -b > 0, from neg_pos_of_neg H,
|
|
have Hl' : - (1 / b) ≤ - (1 / a), from neg_le_neg Hl,
|
|
have Hl'' : 1 / - b ≤ 1 / - a, from calc
|
|
1 / -b = - (1 / b) : by rewrite [division_ring.one_div_neg_eq_neg_one_div (ne_of_lt H)]
|
|
... ≤ - (1 / a) : Hl'
|
|
... = 1 / -a : by rewrite [division_ring.one_div_neg_eq_neg_one_div Ha],
|
|
le_of_neg_le_neg (le_of_one_div_le_one_div H' Hl'')
|
|
|
|
theorem lt_of_one_div_lt_one_div (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a :=
|
|
have Hb : 0 < b, from pos_of_one_div_pos (calc
|
|
0 < 1 / a : one_div_pos_of_pos H
|
|
... < 1 / b : Hl),
|
|
have H : 1 < a / b, from (calc
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H
|
|
... = a / b : div_eq_mul_one_div),
|
|
lt_of_one_lt_div Hb H
|
|
|
|
theorem lt_of_one_div_lt_one_div_of_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a :=
|
|
have H1 : b ≤ a, from le_of_one_div_le_one_div_of_neg H (le_of_lt Hl),
|
|
have Hn : b ≠ a, from
|
|
(assume Hn' : b = a,
|
|
have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _,
|
|
absurd Hl' (ne_of_lt Hl)),
|
|
lt_of_le_of_ne H1 Hn
|
|
|
|
theorem one_div_lt_one_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
|
|
lt_of_not_ge
|
|
(assume H',
|
|
absurd H (not_lt_of_ge (le_of_one_div_le_one_div Ha H')))
|
|
|
|
theorem one_div_le_one_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
le_of_not_gt
|
|
(assume H',
|
|
absurd H (not_le_of_gt (lt_of_one_div_lt_one_div Ha H')))
|
|
|
|
theorem one_div_lt_one_div_of_lt_of_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a :=
|
|
lt_of_not_ge
|
|
(assume H',
|
|
absurd H (not_lt_of_ge (le_of_one_div_le_one_div_of_neg Hb H')))
|
|
|
|
theorem one_div_le_one_div_of_le_of_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
le_of_not_gt
|
|
(assume H',
|
|
absurd H (not_le_of_gt (lt_of_one_div_lt_one_div_of_neg Hb H')))
|
|
|
|
theorem one_div_le_of_one_div_le_of_pos (Ha : a > 0) (H : 1 / a ≤ b) : 1 / b ≤ a :=
|
|
begin
|
|
rewrite -(one_div_one_div a),
|
|
apply one_div_le_one_div_of_le,
|
|
apply one_div_pos_of_pos,
|
|
repeat assumption
|
|
end
|
|
|
|
theorem one_div_le_of_one_div_le_of_neg (Ha : b < 0) (H : 1 / a ≤ b) : 1 / b ≤ a :=
|
|
begin
|
|
rewrite -(one_div_one_div a),
|
|
apply one_div_le_one_div_of_le_of_neg,
|
|
repeat assumption
|
|
end
|
|
|
|
theorem one_lt_one_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a :=
|
|
one_div_one ▸ one_div_lt_one_div_of_lt H1 H2
|
|
|
|
theorem one_le_one_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a :=
|
|
one_div_one ▸ one_div_le_one_div_of_le H1 H2
|
|
|
|
theorem one_div_lt_neg_one (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 :=
|
|
one_div_neg_one_eq_neg_one ▸ one_div_lt_one_div_of_lt_of_neg H1 H2
|
|
|
|
theorem one_div_le_neg_one (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 :=
|
|
one_div_neg_one_eq_neg_one ▸ one_div_le_one_div_of_le_of_neg H1 H2
|
|
|
|
theorem div_lt_div_of_pos_of_lt_of_pos (Hb : 0 < b) (H : b < a) (Hc : 0 < c) : c / a < c / b :=
|
|
begin
|
|
apply iff.mp !sub_neg_iff_lt,
|
|
rewrite [div_eq_mul_one_div, {c / b}div_eq_mul_one_div, -mul_sub_left_distrib],
|
|
apply mul_neg_of_pos_of_neg,
|
|
exact Hc,
|
|
apply iff.mpr !sub_neg_iff_lt,
|
|
apply one_div_lt_one_div_of_lt,
|
|
repeat assumption
|
|
end
|
|
|
|
theorem div_mul_le_div_mul_of_div_le_div_pos' {d e : A} (H : a / b ≤ c / d)
|
|
(He : e > 0) : a / (b * e) ≤ c / (d * e) :=
|
|
begin
|
|
rewrite [2 div_mul_eq_div_mul_one_div],
|
|
apply mul_le_mul_of_nonneg_right H,
|
|
apply le_of_lt,
|
|
apply one_div_pos_of_pos He
|
|
end
|
|
|
|
theorem abs_div (a b : A) : abs (a / b) = abs a / abs b :=
|
|
decidable.by_cases
|
|
(suppose b = 0, by rewrite [this, abs_zero, *div_zero, abs_zero])
|
|
(suppose b ≠ 0,
|
|
have abs b ≠ 0, from assume H, this (eq_zero_of_abs_eq_zero H),
|
|
eq_div_of_mul_eq _ _ this
|
|
(show abs (a / b) * abs b = abs a, by rewrite [-abs_mul, div_mul_cancel _ `b ≠ 0`]))
|
|
|
|
theorem abs_one_div (a : A) : abs (1 / a) = 1 / abs a :=
|
|
by rewrite [abs_div, abs_of_nonneg (zero_le_one : 1 ≥ (0 : A))]
|
|
|
|
theorem sign_eq_div_abs (a : A) : sign a = a / (abs a) :=
|
|
decidable.by_cases
|
|
(suppose a = 0, by subst a; rewrite [zero_div, sign_zero])
|
|
(suppose a ≠ 0,
|
|
have abs a ≠ 0, from assume H, this (eq_zero_of_abs_eq_zero H),
|
|
!eq_div_of_mul_eq this !eq_sign_mul_abs⁻¹)
|
|
|
|
theorem add_quarters (a : A) : a / 4 + a / 4 = a / 2 :=
|
|
have H4 [visible] : (4 : A) = 2 * 2, by norm_num,
|
|
calc
|
|
a / 4 + a / 4 = (a + a) / (2 * 2) : by rewrite [-H4, div_add_div_same]
|
|
... = (a * 1 + a * 1) / (2 * 2) : by rewrite mul_one
|
|
... = (a * (1 + 1)) / (2 * 2) : by rewrite left_distrib
|
|
... = (a * 2) / (2 * 2) : rfl
|
|
... = ((a * 2) / 2) / 2 : by rewrite -div_div_eq_div_mul
|
|
... = a / 2 : by rewrite (mul_div_cancel a two_ne_zero)
|
|
|
|
lemma div_two_add_div_four_lt {a : A} (H : a > 0) : a / 2 + a / 4 < a :=
|
|
begin
|
|
replace (4 : A) with (2 : A) + 2,
|
|
have Hne : (2 + 2 : A) ≠ 0, from ne_of_gt four_pos,
|
|
krewrite (div_add_div _ _ two_ne_zero Hne),
|
|
have Hnum : (2 + 2 + 2) / (2 * (2 + 2)) = (3 : A) / 4, by norm_num,
|
|
rewrite [{2 * a}mul.comm, -left_distrib, mul_div_assoc, -mul_one a at {2}], krewrite Hnum,
|
|
apply mul_lt_mul_of_pos_left,
|
|
apply div_lt_of_mul_lt_of_pos,
|
|
apply four_pos,
|
|
rewrite one_mul,
|
|
replace (3 : A) with (2 : A) + 1,
|
|
replace (4 : A) with (2 : A) + 2,
|
|
apply add_lt_add_left,
|
|
apply two_gt_one,
|
|
exact H
|
|
end
|
|
|
|
end discrete_linear_ordered_field
|